Pascual Sanz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3544342/publications.pdf

Version: 2024-02-01

136	5,493	70961 41 h-index	64
papers	citations		g-index
141	141	141	6773 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Neuroprotective Effect of IND1316, an Indole-Based AMPK Activator, in Animal Models of Huntington Disease. ACS Chemical Neuroscience, 2022, 13, 275-287.	1.7	3
2	Pharmacological Modulation of Glutamatergic and Neuroinflammatory Pathways in a Lafora Disease Mouse Model. Molecular Neurobiology, 2022, 59, 6018-6032.	1.9	5
3	TRIM32 and Malin in Neurological and Neuromuscular Rare Diseases. Cells, 2021, 10, 820.	1.8	10
4	Beneficial Effects of Metformin on the Central Nervous System, with a Focus on Epilepsy and Lafora Disease. International Journal of Molecular Sciences, 2021, 22, 5351.	1.8	16
5	Gene expression analysis method integration and co-expression module detection applied to rare glucide metabolism disorders using ExpHunterSuite. Scientific Reports, 2021, 11, 15062.	1.6	11
6	Modulators of Neuroinflammation Have a Beneficial Effect in a Lafora Disease Mouse Model. Molecular Neurobiology, 2021, 58, 2508-2522.	1.9	19
7	Endocytosis of the glutamate transporter 1 is regulated by laforin and malin: Implications in <scp>Lafora</scp> disease. Glia, 2021, 69, 1170-1183.	2.5	9
8	An empirical pipeline for personalized diagnosis of Lafora disease mutations. IScience, 2021, 24, 103276.	1.9	7
9	Cannabidiol-Enriched Extract Reduced the Cognitive Impairment but Not the Epileptic Seizures in a Lafora Disease Animal Model. Cannabis and Cannabinoid Research, 2020, 5, 150-163.	1.5	13
10	Reactive Glia-Derived Neuroinflammation: a Novel Hallmark in Lafora Progressive Myoclonus Epilepsy That Progresses with Age. Molecular Neurobiology, 2020, 57, 1607-1621.	1.9	43
11	Regulation of the autophagic PI3KC3 complex by laforin/malin E3-ubiquitin ligase, two proteins involved in Lafora disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118613.	1.9	20
12	Synergistic activation of AMPK prevents from polyglutamine-induced toxicity in Caenorhabditis elegans. Pharmacological Research, 2020, 161, 105105.	3.1	14
13	Neuroinflammation and progressive myoclonus epilepsies: from basic science to therapeutic opportunities. Expert Reviews in Molecular Medicine, 2020, 22, e4.	1.6	18
14	Reactive Glia Inflammatory Signaling Pathways and Epilepsy. International Journal of Molecular Sciences, 2020, 21, 4096.	1.8	90
15	The 5th International Lafora Epilepsy Workshop: Basic science elucidating therapeutic options and preparing for therapies in the clinic. Epilepsy and Behavior, 2020, 103, 106839.	0.9	17
16	Oxidative Stress, a Crossroad Between Rare Diseases and Neurodegeneration. Antioxidants, 2020, 9, 313.	2,2	39
17	In vivo glutamate clearance defects in a mouse model of Lafora disease. Experimental Neurology, 2019, 320, 112959.	2.0	15
18	Metformin treatment reduces motor and neuropsychiatric phenotypes in the zQ175 mouse model of Huntington disease. Experimental and Molecular Medicine, 2019, 51, 1-16.	3.2	46

#	Article	IF	Citations
19	AMPK Protein Interaction Analyses by Yeast Two-Hybrid. Methods in Molecular Biology, 2018, 1732, 143-157.	0.4	3
20	Degradation of altered mitochondria by autophagy is impaired in Lafora disease. FEBS Journal, 2018, 285, 2071-2090.	2.2	22
21	Astrocytes: new players in progressive myoclonus epilepsy of Lafora type. Human Molecular Genetics, 2018, 27, 1290-1300.	1.4	50
22	Lafora Disease: A Ubiquitination-Related Pathology. Cells, 2018, 7, 87.	1.8	38
23	A novel EPM2A mutation yields a slow progression form of Lafora disease. Epilepsy Research, 2018, 145, 169-177.	0.8	10
24	Inflammation in Lafora Disease: Evolution with Disease Progression in Laforin and Malin Knock-out Mouse Models. Molecular Neurobiology, 2017, 54, 3119-3130.	1.9	53
25	4-Phenylbutyric acid and metformin decrease sensitivity to pentylenetetrazol-induced seizures in a malin knockout model of Lafora disease. NeuroReport, 2017, 28, 268-271.	0.6	35
26	<scp>AMPK</scp> α1â€ <scp>LDH</scp> pathway regulates muscle stem cell selfâ€renewal by controlling metabolic homeostasis. EMBO Journal, 2017, 36, 1946-1962.	3.5	95
27	An Attachment-Independent Biochemical Timer of the Spindle Assembly Checkpoint. Molecular Cell, 2017, 68, 715-730.e5.	4.5	62
28	Studying Closed Hydrodynamic Models of "In Vivo―DNA Perfusion in Pig Liver for Gene Therapy Translation to Humans. PLoS ONE, 2016, 11, e0163898.	1.1	15
29	Homeostasis of the astrocytic glutamate transporter GLT-1 is altered in mouse models of Lafora disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1074-1083.	1.8	27
30	The interaction between AMPK \hat{l}^2 2 and the PP1-targeting subunit R6 is dynamically regulated by intracellular glycogen content. Biochemical Journal, 2016, 473, 937-947.	1.7	8
31	Assessing the Biological Activity of the Glucan Phosphatase Laforin. Methods in Molecular Biology, 2016, 1447, 107-119.	0.4	3
32	AMPK in Yeast: The SNF1 (Sucrose Non-fermenting 1) Protein Kinase Complex. Exs, 2016, 107, 353-374.	1.4	23
33	Pharmacological Interventions to Ameliorate Neuropathological Symptoms in a Mouse Model of Lafora Disease. Molecular Neurobiology, 2016, 53, 1296-1309.	1.9	59
34	The laforin/malin E3-ubiquitin ligase complex ubiquitinates pyruvate kinase M1/M2. BMC Biochemistry, 2015, 16, 24.	4.4	24
35	Structure-Function Analysis of PPP1R3D, a Protein Phosphatase 1 Targeting Subunit, Reveals a Binding Motif for 14-3-3 Proteins which Regulates its Glycogenic Properties. PLoS ONE, 2015, 10, e0131476.	1.1	8
36	Structural Mechanism of Laforin Function in Glycogen Dephosphorylation and Lafora Disease. Molecular Cell, 2015, 57, 261-272.	4.5	54

#	Article	IF	CITATIONS
37	Oxidative stress, a new hallmark in the pathophysiology of Lafora progressive myoclonus epilepsy. Free Radical Biology and Medicine, 2015, 88, 30-41.	1.3	28
38	Ubiquitin conjugating enzyme E2-N and sequestosome-1 (p62) are components of the ubiquitination process mediated by the malin–laforin E3-ubiquitin ligase complex. International Journal of Biochemistry and Cell Biology, 2015, 69, 204-214.	1.2	26
39	Increased Oxidative Stress and Impaired Antioxidant Response in Lafora Disease. Molecular Neurobiology, 2015, 51, 932-946.	1.9	39
40	Increased oxidative stress and impaired antioxidant response in Lafora disease. Free Radical Biology and Medicine, 2014, 75, S47.	1.3	4
41	Laforin, a protein with many faces: glucan phosphatase, adapter protein, et alii. FEBS Journal, 2013, 280, 525-537.	2.2	63
42	Glycogenic activity of R6, a protein phosphatase 1 regulatory subunit, is modulated by the laforin–malin complex. International Journal of Biochemistry and Cell Biology, 2013, 45, 1479-1488.	1.2	39
43	Lafora disease fibroblasts exemplify the molecular interdependence between thioredoxin 1 and the proteasome in mammalian cells. Free Radical Biology and Medicine, 2013, 65, 347-359.	1.3	14
44	Sumoylation of AMPK \hat{i}^2 2 subunit enhances AMP-activated protein kinase activity. Molecular Biology of the Cell, 2013, 24, 1801-1811.	0.9	40
45	<scp>AMPK</scp> beta subunits: more than just a scaffold in the formation of <scp>AMPK</scp> complex. FEBS Journal, 2013, 280, 3723-3733.	2.2	40
46	Dimerization of the Glucan Phosphatase Laforin Requires the Participation of Cysteine 329. PLoS ONE, 2013, 8, e69523.	1.1	15
47	Plasmodium falciparum Inhibitor-3 Homolog Increases Protein Phosphatase Type 1 Activity and Is Essential for Parasitic Survival. Journal of Biological Chemistry, 2012, 287, 1306-1321.	1.6	29
48	Lafora bodies and neurological defects in malin-deficient mice correlate with impaired autophagy. Human Molecular Genetics, 2012, 21, 1521-1533.	1.4	131
49	Lafora bodies and neurological defects in malin-deficient mice correlate with impaired autophagy. Human Molecular Genetics, 2012, 21, 4366-4366.	1.4	1
50	Glucoseâ€dependent regulation of AMPâ€activated protein kinase in MIN6 beta cells is not affected by the protein kinase A pathway. FEBS Letters, 2012, 586, 4241-4247.	1.3	10
51	Malin knockout mice support a primary role of autophagy in the pathogenesis of Lafora disease. Autophagy, 2012, 8, 701-703.	4.3	21
52	Deciphering the role of malin in the lafora progressive myoclonus epilepsy. IUBMB Life, 2012, 64, 801-808.	1.5	25
53	Histone carbonylation occurs in proliferating cells. Free Radical Biology and Medicine, 2012, 52, 1453-1464.	1.3	28
54	Lafora disease E3-ubiquitin ligase malin is related to TRIM32 at both the phylogenetic and functional level. BMC Evolutionary Biology, 2011, 11, 225.	3.2	23

#	Article	IF	Citations
55	Laforin, a Dual Specificity Phosphatase Involved in Lafora Disease, Is Present Mainly as Monomeric Form with Full Phosphatase Activity. PLoS ONE, 2011, 6, e24040.	1.1	25
56	Laforin, a dual-specificity phosphatase involved in Lafora disease, is phosphorylated at Ser25 by AMP-activated protein kinase. Biochemical Journal, 2011, 439, 265-275.	1.7	29
57	Lafora progressive myoclonus epilepsy: NHLRC1 mutations affect glycogen metabolism. Journal of Molecular Medicine, 2011, 89, 915-925.	1.7	20
58	Laforin, a dual specificity phosphatase involved in Lafora disease, regulates insulin response and whole-body energy balance in mice. Human Molecular Genetics, 2011, 20, 2571-2584.	1.4	16
59	A PTG Variant Contributes to a Milder Phenotype in Lafora Disease. PLoS ONE, 2011, 6, e21294.	1.1	93
60	The Laforin–Malin Complex, Involved in Lafora Disease, Promotes the Incorporation of K63-linked Ubiquitin Chains into AMP-activated Protein Kinase β Subunits. Molecular Biology of the Cell, 2010, 21, 2578-2588.	0.9	53
61	The PP1-R6 protein phosphatase holoenzyme is involved in the glucose-induced dephosphorylation and inactivation of AMP-activated protein kinase, a key regulator of insulin secretion, in MIN6 \hat{l}^2 cells. FASEB Journal, 2010, 24, 5080-5091.	0.2	66
62	Impaired autophagy in Lafora disease. Autophagy, 2010, 6, 991-993.	4.3	30
63	Large Islets, Beta-Cell Proliferation, and a Glucokinase Mutation. New England Journal of Medicine, 2010, 362, 1348-1350.	13.9	81
64	Laforin, the most common protein mutated in Lafora disease, regulates autophagy. Human Molecular Genetics, 2010, 19, 2867-2876.	1.4	170
65	The PP1â€R6 protein phosphatase holoenzyme is involved in the glucoseâ€induced dephosphorylation and inactivation of AMPâ€activated protein kinase, a key regulator of insulin secretion, in MIN6 β cells. FASEB Journal, 2010, 24, 5080-5091.	0.2	17
66	Increased Endoplasmic Reticulum Stress and Decreased Proteasomal Function in Lafora Disease Models Lacking the Phosphatase Laforin. PLoS ONE, 2009, 4, e5907.	1.1	69
67	AMP-activated Protein Kinase Phosphorylates R5/PTG, the Glycogen Targeting Subunit of the R5/PTG-Protein Phosphatase 1 Holoenzyme, and Accelerates Its Down-regulation by the Laforin-Malin Complex. Journal of Biological Chemistry, 2009, 284, 8247-8255.	1.6	53
68	Opposite Clinical Phenotypes of Glucokinase Disease: Description of a Novel Activating Mutation and Contiguous Inactivating Mutations in Human Glucokinase (GCK) Gene. Molecular Endocrinology, 2009, 23, 1983-1989.	3.7	30
69	Diagnostic Difficulties in Glucokinase Hyperinsulinism. Hormone and Metabolic Research, 2009, 41, 320-326.	0.7	23
70	Two-hybrid analysis identifies PSMD11, a non-ATPase subunit of the proteasome, as a novel interaction partner of AMP-activated protein kinase. International Journal of Biochemistry and Cell Biology, 2009, 41, 2431-2439.	1,2	24
71	Biochemical characterization of novel glucokinase mutations isolated from Spanish maturity-onset diabetes of the young (MODY2) patients. Journal of Human Genetics, 2008, 53, 460-466.	1.1	12
72	A769662, a novel activator of AMPâ€activated protein kinase, inhibits nonâ€proteolytic components of the 26S proteasome by an AMPKâ€independent mechanism. FEBS Letters, 2008, 582, 2650-2654.	1.3	76

#	Article	IF	Citations
73	Role of AMP-activated protein kinase in autophagy and proteasome function. Biochemical and Biophysical Research Communications, 2008, 369, 964-968.	1.0	67
74	Regulation of glycogen synthesis by the laforin–malin complex is modulated by the AMP-activated protein kinase pathway. Human Molecular Genetics, 2008, 17, 667-678.	1.4	128
75	Human pancreatic \hat{l}^2 -cell glucokinase: subcellular localization and glucose repression signalling function in the yeast cell. Biochemical Journal, 2008, 415, 233-239.	1.7	8
76	AMP-Activated Protein Kinase: Structure and Regulation. Current Protein and Peptide Science, 2008, 9, 478-492.	0.7	80
77	YPI1 and SDS22 Proteins Regulate the Nuclear Localization and Function of Yeast Type 1 Phosphatase Glc7. Journal of Biological Chemistry, 2007, 282, 3282-3292.	1.6	50
78	A Conserved Sequence Immediately N-terminal to the Bateman Domains in AMP-activated Protein Kinase \hat{I}^3 Subunits Is Required for the Interaction with the \hat{I}^2 Subunits. Journal of Biological Chemistry, 2007, 282, 16117-16125.	1.6	25
79	A Complex of Catalytically Inactive Protein Phosphatase-1 Sandwiched between Sds22 and Inhibitor-3. Biochemistry, 2007, 46, 8909-8919.	1.2	59
80	Yeast as a model system to study glucose-mediated signalling and response. Frontiers in Bioscience - Landmark, 2007, 12, 2358.	3.0	12
81	TRIP6 transcriptional co-activator is a novel substrate of AMP-activated protein kinase. Cellular Signalling, 2006, 18, 1702-1712.	1.7	26
82	Structure-function analysis of the $\hat{l}\pm 5$ and the $\hat{l}\pm 13$ helices of human glucokinase: Description of two novel activating mutations. Protein Science, 2005, 14, 2080-2086.	3.1	18
83	TOR kinase pathway and 14-3-3 proteins regulate glucose-induced expression of HXT1, a yeast low-affinity glucose transporter. Yeast, 2005, 22, 471-479.	0.8	22
84	Frataxin interacts functionally with mitochondrial electron transport chain proteins. Human Molecular Genetics, 2005, 14, 2091-2098.	1.4	124
85	Severe Persistent Hyperinsulinemic Hypoglycemia due to a De Novo Glucokinase Mutation. Diabetes, 2004, 53, 2164-2168.	0.3	174
86	Expression of the HXT1 Low Affinity Glucose Transporter Requires the Coordinated Activities of the HOG and Glucose Signalling Pathways. Journal of Biological Chemistry, 2004, 279, 22010-22019.	1.6	44
87	Glucose and Type 2A Protein Phosphatase Regulate the Interaction Between Catalytic and Regulatory Subunits of AMP-activated Protein Kinase. Journal of Molecular Biology, 2003, 333, 201-209.	2.0	44
88	Saccharomyces cerevisiae 14-3-3 proteins Bmh1 and Bmh2 participate in the process of catabolite inactivation of maltose permease. FEBS Letters, 2003, 544, 160-164.	1.3	31
89	New mutations of that partially relieve both glucose and galactose repression activate the protein kinase Snf1. FEMS Yeast Research, 2003, 3, 77-84.	1.1	6
90	Laforin, the dual-phosphatase responsible for Lafora disease, interacts with R5 (PTG), a regulatory subunit of protein phosphatase-1 that enhances glycogen accumulation. Human Molecular Genetics, 2003, 12, 3161-3171.	1.4	102

#	Article	IF	Citations
91	Molecular Characterization of Ypi1, a Novel Saccharomyces cerevisiae Type 1 Protein Phosphatase Inhibitor. Journal of Biological Chemistry, 2003, 278, 47744-47752.	1.6	69
92	Snf1 protein kinase: a key player in the response to cellular stress in yeast. Biochemical Society Transactions, 2003, 31, 178-181.	1.6	75
93	Convergence of the Target of Rapamycin and the Snf1 Protein Kinase Pathways in the Regulation of the Subcellular Localization of Msn2, a Transcriptional Activator of STRE (Stress Response) Tj ETQq1 1 0.784314 rgBT	/ O verlock	89 Tf 50 6
94	Active Snf1 protein kinase inhibits expression of the Saccharomyces cerevisiae HXT1 glucose transporter gene. Biochemical Journal, 2002, 368, 657-663.	1.7	63
95	The Saccharomyces cerevisiae $14-3-3$ protein Bmh2 is required for regulation of the phosphorylation status of Fin1, a novel intermediate filament protein. Biochemical Journal, 2002, 365, 51-56.	1.7	17
96	Hexokinase PII: structural analysis and glucose signalling in the yeastSaccharomyces cerevisiae. Yeast, 2001, 18, 923-930.	0.8	40
97	Human pancreatic glucokinase (GlkB) complements the glucose signalling defect of Saccharomyces cerevisiae hxk2 mutants. Yeast, 2001, 18, 1309-1316.	0.8	28
98	Disruption and functional analysis of six ORFs on chromosome IV: YDL053c, YDL072c, YDL073w, YDL076c, YDL077c and YDL080c. Yeast, 2000, 16, 1437-1443.	0.8	4
99	Regulatory Interactions between the Reg1-Glc7 Protein Phosphatase and the Snf1 Protein Kinase. Molecular and Cellular Biology, 2000, 20, 1321-1328.	1.1	222
100	Sip5 Interacts With Both the Reg1/Glc7 Protein Phosphatase and the Snf1 Protein Kinase of Saccharomyces cerevisiae. Genetics, 2000, 154, 99-107.	1.2	24
101	Stable High-Copy-Number Integration of Aspergillus oryzae α-AMYLASE cDNA in an Industrial Baker's Yeast Strain. Biotechnology Progress, 1999, 15, 459-466.	1.3	38
102	Expression and secretion ofBacillus polymyxaneopullulanase inSaccharomyces cerevisiae. FEMS Microbiology Letters, 1999, 170, 41-49.	0.7	17
103	Title is missing!. Biotechnology Letters, 1999, 21, 225-229.	1.1	5
104	Reg1p targets protein phosphatase 1 to dephosphorylate hexokinase II in Saccharomyces cerevisiae: characterizing the effects of a phosphatase subunit on the yeast proteome. EMBO Journal, 1999, 18, 4157-4168.	3.5	74
105	Engineering baker's yeast: room for improvement. Trends in Biotechnology, 1999, 17, 237-244.	4.9	106
106	Expression of LIP1 and LIP2 Genes from Geotrichum Species in Baker's Yeast Strains and Their Application to the Bread-Making Process. Journal of Agricultural and Food Chemistry, 1999, 47, 803-808.	2.4	34
107	Hexokinase PII has a double cytosolic-nuclear localisation inSaccharomyces cerevisiae. FEBS Letters, 1998, 425, 475-478.	1.3	90
108	Carbon Source-Dependent Phosphorylation of Hexokinase PII and Its Role in the Glucose-Signaling Response in Yeast. Molecular and Cellular Biology, 1998, 18, 2940-2948.	1.1	112

#	Article	IF	Citations
109	A 13C Nuclear Magnetic Resonance Investigation of the Metabolism of Leucine to Isoamyl Alcohol in Saccharomyces cerevisiae. Journal of Biological Chemistry, 1997, 272, 26871-26878.	1.6	177
110	Construction of Baker's Yeast Strains that Secrete Different Xylanolytic Enzymes and their use in Bread Making. Journal of Cereal Science, 1997, 26, 195-199.	1.8	17
111	Characterization of novel neopullulanase fromBacillus polymyxa. Applied Biochemistry and Biotechnology, 1997, 68, 113-120.	1.4	16
112	Glucose repression may involve processes with different sugar kinase requirements. Journal of Bacteriology, 1996, 178, 4721-4723.	1.0	36
113	Combined Expression of Aspergillus nidulans Endoxylanase X24 and Aspergillus oryzae (alpha)-Amylase in Industrial Baker's Yeasts and Their Use in Bread Making. Applied and Environmental Microbiology, 1996, 62, 3712-3715.	1.4	27
114	The expression of a specific 2-deoxyglucose-6P phosphatase prevents catabolite repression mediated by 2-deoxyglucose in yeast. Current Genetics, 1995, 28, 101-107.	0.8	28
115	DOGR1 and DOGR2: Two genes from Saccharomyces cerevisiae that confer 2-deoxyglucose resistance when overexpressed. Yeast, 1995, 11, 1233-1240.	0.8	46
116	Construction of baker's yeast strains that secrete Aspergillus oryzae alpha-amylase and their use in bread making. Journal of Cereal Science, 1995, 21, 185-193.	1.8	39
117	Purification and characterization of a new α-amylase of intermediate thermal stability from the yeast Lipomyces kononenkoae. Biochemistry and Cell Biology, 1995, 73, 41-49.	0.9	46
118	The Bacillus subtilis lplA gene is a component of a cluster coding for a putative ABC transporter Journal of General and Applied Microbiology, 1995, 41, 523-528.	0.4	0
119	The Bacillus subtilis lipoprotein LpIA causes cell lysis when expressed in Escherichia coli. Microbiology (United Kingdom), 1994, 140, 1839-1845.	0.7	10
120	Molecular characterization of a gene that confers 2-deoxyglucose resistance in yeast. Yeast, 1994, 10, 1195-1202.	0.8	29
121	Nucleotide sequence of a putative peroxisomal protein from the yeastLipomyces kononenkoae. FEMS Microbiology Letters, 1994, 122, 153-157.	0.7	6
122	Construction of industrial baker's yeast strains able to assimilate maltose under catabolite repression conditions. Applied Microbiology and Biotechnology, 1994, 42, 581-586.	1.7	29
123	Cloning and characterization of the SEC18 gene from Candida albicans. Yeast, 1993, 9, 875-887.	0.8	25
124	Expression ofAspergillus oryzaeα-amylase gene inSaccharomyces cerevisiae. FEMS Microbiology Letters, 1993, 112, 119-124.	0.7	20
125	Purification and characterization of a neutral endoxylanase fromAspergillus nidulans. FEMS Microbiology Letters, 1993, 113, 223-228.	0.7	39
126	Clinical and Pathological Findings in Fatal Plant Oxalosis. American Journal of Forensic Medicine and Pathology, 1992, 13, 342-345.	0.4	46

#	Article	IF	CITATION
127	Receptor-mediated binding of secretory protein precursors to endoplasmic reticulum membranes in yeast. Biochemical Society Transactions, 1990, 18, 143-146.	1.6	0
128	Secretion in yeast: preprotein binding to a membrane receptor and ATP-dependent translocation are sequential and separable events in vitro Journal of Cell Biology, 1989, 108, 2101-2106.	2.3	42
129	Fatal mushroom poisoning in Barcelona, 1986?1988. Mycopathologia, 1989, 108, 207-209.	1.3	11
130	Role of glycosylation in the incorporation of intrinsic mannoproteins into cell walls of Saccharomyces cerevisiae. FEMS Microbiology Letters, 1989, 57, 265-268.	0.7	9
131	Disseminated Intravascular Coagulation and Mesenteric Venous Thrombosis in Fatal Amanita Poisoning. Human Toxicology, 1988, 7, 199-201.	0.9	14
132	Signal recognition particle (SRP) stabilizes the translocation-competent conformation of pre-secretory proteins EMBO Journal, 1988, 7, 3553-3557.	3.5	42
133	In vivo and in vitro analysis of ptl1, a yeast ts mutant with a membrane-associated defect in protein translocation EMBO Journal, 1988, 7, 4347-4353.	3.5	78
134	Signal recognition particle (SRP) stabilizes the translocation-competent conformation of pre-secretory proteins. EMBO Journal, 1988, 7, 3553-7.	3.5	21
135	In vivo and in vitro analysis of ptl1, a yeast ts mutant with a membrane-associated defect in protein translocation. EMBO Journal, 1988, 7 , 4347-53.	3.5	49
136	Secretory pattern of a major integral mannoprotein of the yeast cell wall. Biochimica Et Biophysica Acta - General Subjects, 1987, 924, 193-203.	1.1	15