Zhongjun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3544213/publications.pdf

Version: 2024-02-01

			44069	3	66028
99		9,759	48		97
papers		citations	h-index		g-index
	. '				
103		103	103		10551
all docs		docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Au Nanoparticle Modification Induces Charge-Transfer Channels to Enhance the Electrocatalytic Hydrogen Evolution Reaction of InSe Nanosheets. ACS Applied Materials & Samp; Interfaces, 2022, 14, 2908-2917.	8.0	14
2	Two-dimensional gold decorated indium selenide for near-infrared and mid-infrared ultrafast photonics. Optics and Laser Technology, 2022, 150, 107920.	4.6	10
3	Programmed Stimuli-Responsive Carbon Dot-Nanogel Hybrids for Imaging-Guided Enhanced Tumor Phototherapy. ACS Applied Materials & Samp; Interfaces, 2022, 14, 10142-10153.	8.0	19
4	A Fully Integrated Flexible Tunable Chemical Sensor Based on Gold-Modified Indium Selenide Nanosheets. ACS Sensors, 2022, 7, 1183-1193.	7.8	29
5	Dynamics of broadband photoinduced species and enabled photodetection in MXenes. Nanophotonics, 2022, 11, 3139-3148.	6.0	6
6	Tumorâ€specific and photothermalâ€augmented chemodynamic therapy by ferroceneâ€carbon dotâ€crosslinked nanoparticles. SmartMat, 2022, 3, 311-322.	10.7	21
7	Targeted graphene oxide for drug delivery as a therapeutic nanoplatform against Parkinson's disease. Biomaterials Science, 2021, 9, 1705-1715.	5.4	46
8	Supra-Carbon Dots Formed by Fe ³⁺ -Driven Assembly for Enhanced Tumor-Specific Photo-Mediated and Chemodynamic Synergistic Therapy. ACS Applied Bio Materials, 2021, 4, 2759-2768.	4.6	19
9	TiO2 supported single Ag atoms nanozyme for elimination of SARS-CoV2. Nano Today, 2021, 40, 101243.	11.9	76
10	Fascinating MXene nanomaterials: emerging opportunities in the biomedical field. Biomaterials Science, 2021, 9, 5437-5471.	5.4	58
11	Indium selenide for Q-switched pulse generation in a mid-infrared fiber laser. Journal of Materials Chemistry C, 2021, 9, 5893-5898.	5.5	5
12	Challenges and future perspectives on microwave absorption based on two-dimensional materials and structures. Nanotechnology, 2020, 31, 162001.	2.6	42
13	Carbon Dots with Dualâ€Emissive, Robust, and Aggregationâ€Induced Roomâ€Temperature Phosphorescence Characteristics. Angewandte Chemie, 2020, 132, 1279-1285.	2.0	18
14	Carbon Dots with Dualâ€Emissive, Robust, and Aggregationâ€Induced Roomâ€Temperature Phosphorescence Characteristics. Angewandte Chemie - International Edition, 2020, 59, 1263-1269.	13.8	198
15	A self-encapsulated broadband phototransistor based on a hybrid of graphene and black phosphorus nanosheets. Nanoscale Advances, 2020, 2, 1059-1065.	4.6	22
16	Afterglow of carbon dots: mechanism, strategy and applications. Materials Chemistry Frontiers, 2020, 4, 386-399.	5.9	137
17	Band structure tuning of α-MoO ₃ by tin intercalation for ultrafast photonic applications. Nanoscale, 2020, 12, 23140-23149.	5.6	20
18	Optoelectronic Gas Sensor Based on Few-Layered InSe Nanosheets for NO ₂ Detection with Ultrahigh Antihumidity Ability. Analytical Chemistry, 2020, 92, 11277-11287.	6.5	47

#	Article	lF	CITATIONS
19	Self-powered photodetectors based on OD/2D mixed dimensional heterojunction with black phosphorus quantum dots as hole accepters. Applied Materials Today, 2020, 20, 100765.	4.3	44
20	Brain-targeted delivery shuttled by black phosphorus nanostructure to treat Parkinson's disease. Biomaterials, 2020, 260, 120339.	11.4	66
21	Tumor Microenvironment Stimuliâ€Responsive Fluorescence Imaging and Synergistic Cancer Therapy by Carbonâ€Dot–Cu ²⁺ Nanoassemblies. Angewandte Chemie, 2020, 132, 21227-21234.	2.0	171
22	Black phosphorus-based photothermal therapy with aCD47-mediated immune checkpoint blockade for enhanced cancer immunotherapy. Light: Science and Applications, 2020, 9, 161.	16.6	145
23	Tumor Microenvironment Stimuliâ€Responsive Fluorescence Imaging and Synergistic Cancer Therapy by Carbonâ€Dot–Cu ²⁺ Nanoassemblies. Angewandte Chemie - International Edition, 2020, 59, 21041-21048.	13.8	235
24	Visible-Light-Excited Room Temperature Phosphorescent Carbon Dots. Nanomaterials, 2020, 10, 464.	4.1	28
25	A Facile Approach to Carbon Dotsâ€Mesoporous Silica Nanohybrids and Their Applications for Multicolor and Twoâ€Photon Imaging Guided Chemoâ€∤Photothermal Synergistic Oncotherapy. ChemNanoMat, 2020, 6, 953-962.	2.8	12
26	Photoâ€Stimulated Polychromatic Room Temperature Phosphorescence of Carbon Dots. Small, 2020, 16, e2001909.	10.0	125
27	Refractive Index Sensors Based on Ti ₃ C ₂ T _x MXene Fibers. ACS Applied Nano Materials, 2020, 3, 303-311.	5.0	74
28	Facile sonochemical-assisted synthesis of orthorhombic phase black phosphorus/rGO hybrids for effective photothermal therapy. Nanophotonics, 2020, 9, 3023-3034.	6.0	7
29	Two-dimensional tin diselenide nanosheets pretreated with an alkaloid for near- and mid-infrared ultrafast photonics. Photonics Research, 2020, 8, 1687.	7.0	10
30	Anchoring RuO ₂ Nanoparticles on Ultrathin Porous Carbon Shell toward High Performance Lithiumâ€ S ulfur Batteries. ChemistrySelect, 2019, 4, 7463-7469.	1.5	8
31	Controllable synthesis of multi-morphological SrWO ₄ :Ln ³⁺ (Ln = Eu, Tb) hierarchical structures and their luminescence properties. CrystEngComm, 2019, 21, 6482-6490.	2.6	5
32	Recent advances of multidimensional sensing: from design to applications. Science China Chemistry, 2019, 62, 1601-1618.	8.2	13
33	Robust Aboveâ€Roomâ€Temperature Ferromagnetism in Fewâ€Layer Antimonene Triggered by Nonmagnetic Adatoms. Advanced Functional Materials, 2019, 29, 1808746.	14.9	38
34	Insight into the factors influencing the photocatalytic H ₂ evolution performance of molybdenum sulfide. New Journal of Chemistry, 2019, 43, 1230-1237.	2.8	11
35	Enhanced luminescence and tunable magnetic properties of lanthanide coordination polymers based on fluorine substitution and phenanthroline ligand. RSC Advances, 2019, 9, 16328-16338.	3.6	123
36	Few-Layer Antimonene Nanosheet: A Metal-Free Bifunctional Electrocatalyst for Effective Water Splitting. ACS Applied Energy Materials, 2019, 2, 4774-4781.	5.1	46

#	Article	IF	CITATIONS
37	Lithium Benzenedithiolate Catholytes for Rechargeable Lithium Batteries. Advanced Functional Materials, 2019, 29, 1902223.	14.9	44
38	Unveiling the Stimulated Robust Carrier Lifetime of Surfaceâ€Bound Excitons and Their Photoresponse in InSe. Advanced Materials Interfaces, 2019, 6, 1900171.	3.7	18
39	High-Performance Li-CO2 Batteries with α-MnO2/CNT Cathodes. Journal of Electronic Materials, 2019, 48, 4653-4659.	2.2	27
40	Insights into N-Heterocyclic Carbene-Catalyzed Oxidative α-C(sp ³)â€"H Activation of Aliphatic Aldehydes and Cascade [2 + 2] Cycloaddition with Ketimines. Journal of Organic Chemistry, 2019, 84, 6117-6125.	3.2	42
41	Polydopamine-functionalized black phosphorus quantum dots for cancer theranostics. Applied Materials Today, 2019, 15, 297-304.	4.3	86
42	In Situ Synthesis of Sulfur Host with Chemisorption and Electrocatalytic Capability toward Highâ€Performance Lithium–Sulfur Batteries. Energy Technology, 2019, 7, 1900015.	3.8	6
43	The Ultrasmall Biocompatible CuS@BSA Nanoparticle and Its Photothermal Effects. Frontiers in Pharmacology, 2019, 10, 141.	3.5	42
44	2D Ferromagnetism: Robust Aboveâ€Roomâ€Temperature Ferromagnetism in Fewâ€Layer Antimonene Triggered by Nonmagnetic Adatoms (Adv. Funct. Mater. 15/2019). Advanced Functional Materials, 2019, 29, 1970099.	14.9	1
45	Insights into NHC-catalyzed oxidative α-C(sp ³)â€"H activation of aliphatic aldehydes and cascade [2 + 3] cycloaddition with azomethine imines. Catalysis Science and Technology, 2019, 9, 2514-2522.	4.1	48
46	In Situ Synthesis of Fluorescent Mesoporous Silica–Carbon Dot Nanohybrids Featuring Folate Receptor-Overexpressing Cancer Cell Targeting and Drug Delivery. Nano-Micro Letters, 2019, 11, 32.	27.0	70
47	Preparation of Multicolor Photoluminescent Carbon Dots by Tuning Surface States. Nanomaterials, 2019, 9, 529.	4.1	70
48	Ce6-Modified Carbon Dots for Multimodal-Imaging-Guided and Single-NIR-Laser-Triggered Photothermal/Photodynamic Synergistic Cancer Therapy by Reduced Irradiation Power. ACS Applied Materials & Diterfaces, 2019, 11, 5791-5803.	8.0	172
49	Two-dimensional non-layered selenium nanoflakes: facile fabrications and applications for self-powered photo-detector. Nanotechnology, 2019, 30, 114002.	2.6	161
50	Ultrathin GeSe Nanosheets: From Systematic Synthesis to Studies of Carrier Dynamics and Applications for a High-Performance UV–Vis Photodetector. ACS Applied Materials & Diterfaces, 2019, 11, 4278-4287.	8.0	105
51	Designable Hierarchical Cathode for a High-Efficiency Polysulfide Trapper Toward High-Performance Lithium–Sulfur Batteries. Journal of Electronic Materials, 2019, 48, 551-559.	2.2	6
52	Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide. Photonics Research, 2019, 7, 494.	7.0	159
53	Conceptually Novel Black Phosphorus/Cellulose Hydrogels as Promising Photothermal Agents for Effective Cancer Therapy. Advanced Healthcare Materials, 2018, 7, e1701510.	7.6	188
54	Insights into the Nâ€Heterocyclic Carbene (NHC)â€Catalyzed Intramolecular Cyclization of Aldimines: General Mechanism and Role of Catalyst. Chemistry - an Asian Journal, 2018, 13, 1710-1718.	3.3	34

#	Article	IF	CITATIONS
55	Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chemical Society Reviews, 2018, 47, 5109-5124.	38.1	749
56	Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquidâ€Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability. Advanced Functional Materials, 2018, 28, 1705833.	14.9	348
57	Black phosphorus nanosheets for rapid microRNA detection. Nanoscale, 2018, 10, 5060-5064.	5.6	91
58	Highâ€Performance Photoâ€Electrochemical Photodetector Based on Liquidâ€Exfoliated Fewâ€Layered InSe Nanosheets with Enhanced Stability. Advanced Functional Materials, 2018, 28, 1705237.	14.9	258
59	Facile fabrication and characterization of two-dimensional bismuth(<scp>iii</scp>) sulfide nanosheets for high-performance photodetector applications under ambient conditions. Nanoscale, 2018, 10, 2404-2412.	5.6	166
60	THz photonics in two dimensional materials and metamaterials: properties, devices and prospects. Journal of Materials Chemistry C, 2018, 6, 1291-1306.	5.5	124
61	Novel concept of the smart NIR-light–controlled drug release of black phosphorus nanostructure for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 501-506.	7.1	657
62	Two-dimensional bismuth nanosheets as prospective photo-detector with tunable optoelectronic performance. Nanotechnology, 2018, 29, 235201.	2.6	98
63	Two-dimensional beta-lead oxide quantum dots. Nanoscale, 2018, 10, 20540-20547.	5.6	49
64	MXeneâ€Based Nonlinear Optical Information Converter for Allâ€Optical Modulator and Switcher. Laser and Photonics Reviews, 2018, 12, 1800215.	8.7	117
65	Few Layered BiOBr with Expanded Interlayer Spacing and Oxygen Vacancies for Efficient Decomposition of Real Oil Field Produced Wastewater. ACS Sustainable Chemistry and Engineering, 2018, 6, 13739-13746.	6.7	54
66	Cancer Theranostics: A Novel Top-Down Synthesis of Ultrathin 2D Boron Nanosheets for Multimodal Imaging-Guided Cancer Therapy (Adv. Mater. 36/2018). Advanced Materials, 2018, 30, 1870268.	21.0	4
67	Mn-Doped g-C ₃ N ₄ Nanoribbon for Efficient Visible-Light Photocatalytic Water Splitting Coupling with Methylene Blue Degradation. ACS Sustainable Chemistry and Engineering, 2018, 6, 8754-8761.	6.7	93
68	Black-phosphorus-analogue tin monosulfide: an emerging optoelectronic two-dimensional material for high-performance photodetection with improved stability under ambient/harsh conditions. Journal of Materials Chemistry C, 2018, 6, 9582-9593.	5 . 5	153
69	A Novel Topâ€Down Synthesis of Ultrathin 2D Boron Nanosheets for Multimodal Imagingâ€Guided Cancer Therapy. Advanced Materials, 2018, 30, e1803031.	21.0	318
70	Black phosphorus analogue tin sulfide nanosheets: synthesis and application as near-infrared photothermal agents and drug delivery platforms for cancer therapy. Journal of Materials Chemistry B, 2018, 6, 4747-4755.	5.8	137
71	Flexible Metal–Air Batteries: Progress, Challenges, and Perspectives. Small Methods, 2018, 2, 1700231.	8.6	157
72	Heterophase-structured nanocrystals as superior supports for Ru-based catalysts in selective hydrogenation of benzene. Scientific Reports, 2017, 7, 39847.	3.3	14

#	Article	IF	CITATIONS
73	A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors. Journal of Materials Chemistry A, 2017, 5, 6581-6588.	10.3	160
74	Graphene oxide/black phosphorus nanoflake aerogels with robust thermo-stability and significantly enhanced photothermal properties in air. Nanoscale, 2017, 9, 8096-8101.	5.6	207
75	Photodetectors: Environmentally Robust Black Phosphorus Nanosheets in Solution: Application for Selfâ€Powered Photodetector (Adv. Funct. Mater. 18/2017). Advanced Functional Materials, 2017, 27, .	14.9	4
76	Antimonene Quantum Dots: Synthesis and Application as Nearâ€Infrared Photothermal Agents for Effective Cancer Therapy. Angewandte Chemie - International Edition, 2017, 56, 11896-11900.	13.8	465
77	Antimonene Quantum Dots: Synthesis and Application as Nearâ€Infrared Photothermal Agents for Effective Cancer Therapy. Angewandte Chemie, 2017, 129, 12058-12062.	2.0	93
78	Fewâ€Layer Black Phosphorus Nanosheets as Electrocatalysts for Highly Efficient Oxygen Evolution Reaction. Advanced Energy Materials, 2017, 7, 1700396.	19.5	301
79	Environmentally Robust Black Phosphorus Nanosheets in Solution: Application for Selfâ€Powered Photodetector. Advanced Functional Materials, 2017, 27, 1606834.	14.9	342
80	Design and Tailoring of the 3D Macroporous Hydrous RuO ₂ Hierarchical Architectures with a Hard-Template Method for High-Performance Supercapacitors. ACS Applied Materials & Amp; Interfaces, 2017, 9, 4577-4586.	8.0	84
81	Fluorinated Phosphorene: Electrochemical Synthesis, Atomistic Fluorination, and Enhanced Stability. Small, 2017, 13, 1702739.	10.0	150
82	Theoretical Study on DBU-Catalyzed Insertion of Isatins into Aryl Difluoronitromethyl Ketones: A Case for Predicting Chemoselectivity Using Electrophilic Parr Function. ACS Omega, 2017, 2, 7029-7038.	3.5	16
83	Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Materials, 2017, 4, 045010.	4.4	260
84	Quantum Dots: Broadband Nonlinear Optical Response in Few‣ayer Antimonene and Antimonene Quantum Dots: A Promising Optical Kerr Media with Enhanced Stability (Advanced Optical Materials) Tj ETQq0 0	0 7 gBT /O	ve#lock 10 Tf
85	Innentitelbild: Antimonene Quantum Dots: Synthesis and Application as Nearâ€Infrared Photothermal Agents for Effective Cancer Therapy (Angew. Chem. 39/2017). Angewandte Chemie, 2017, 129, 11816-11816.	2.0	1
86	Synthesis of fluorescent polymeric carbon nitride quantum dots in molten salts for security inks. New Journal of Chemistry, 2017, 41, 14918-14923.	2.8	31
87	Ultrashort pulse generation in 2.1 \hat{l} 4m spectral range using black phosphorus based saturable absorber. , 2017, , .		0
88	Graphene/phosphorene nano-heterojunction: facile synthesis, nonlinear optics, and ultrafast photonics applications with enhanced performance. Photonics Research, 2017, 5, 662.	7.0	85
89	Broadband Nonlinear Optical Response in Few‣ayer Antimonene and Antimonene Quantum Dots: A Promising Optical Kerr Media with Enhanced Stability. Advanced Optical Materials, 2017, 5, 1700301.	7.3	269
90	Bioadhesion-inspired fabrication of robust thin-film composite membranes with tunable solvent permeation properties. RSC Advances, 2016, 6, 103981-103992.	3.6	15

Zhongjun Li

#	Article	IF	CITATION
91	Mg-substitution for promoting magnetic and ferroelectric properties of BiFeO3 multiferroic nanoparticles. Materials Letters, 2016, 175, 207-211.	2.6	40
92	Unusual continuous dual absorption peaks in Ca-doped BiFeO ₃ nanostructures for broadened microwave absorption. Nanoscale, 2016, 8, 10415-10424.	5.6	147
93	Surface engineering on a nanocatalyst: basic zinc salt nanoclusters improve catalytic performances of Ru nanoparticles. Journal of Materials Chemistry A, 2016, 4, 17694-17703.	10.3	16
94	Greener synthesis of electrospun collagen/hydroxyapatite composite fibers with an excellent microstructure for bone tissue engineering. International Journal of Nanomedicine, 2015, 10, 3203.	6.7	52
95	A new collagen solution with high concentration and collagen native structure perfectly preserved. RSC Advances, 2015, 5, 87180-87186.	3.6	35
96	Alumina nanofibers obtained via electrospinning of pseudo-boehmite sol/PVP solution. Journal of Sol-Gel Science and Technology, 2014, 70, 72-80.	2.4	27
97	Fabrication and characterization of fibrous HAP/PVP/PEO composites prepared by sol-electrospinning. RSC Advances, 2014, 4, 16731.	3.6	25
98	Microwave permittivity and permeability experiments in high-loss dielectrics: Caution with implicit Fabry-PÃ@rot resonance for negative imaginary permeability. Applied Physics Letters, 2013, 103, .	3.3	58
99	Preparation and Characterization of Phosphorylated Collagen and Hydroxyapatite Composite as a Potential Bone Substitute. Chemistry Letters, 2013, 42, 83-85.	1.3	9