
Craig Murray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3543832/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Kinetics of the Reactions of CH ₂ OO with Acetone, α-Diketones, and β-Diketones. Journal of Physical Chemistry A, 2021, 125, 8557-8571.	1.1	8
2	Mode-specific vibrational predissociation dynamics of (HCl)2via the free and bound HCl stretch overtones. Journal of Chemical Physics, 2020, 152, 194301.	1.2	4
3	UV photofragmentation dynamics of acetaldehyde cations prepared by single-photon VUV ionization. Physical Chemistry Chemical Physics, 2019, 21, 14214-14225.	1.3	4
4	Kinetics of the Reactions between the Criegee Intermediate CH ₂ OO and Alcohols. Journal of Physical Chemistry A, 2018, 122, 258-268.	1.1	88
5	Photodissociation dynamics of acetone studied by time-resolved ion imaging and photofragment excitation spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 2457-2469.	1.3	14
6	Competing pathways in the near-UV photochemistry of acetaldehyde. Physical Chemistry Chemical Physics, 2017, 19, 14276-14288.	1.3	21
7	UV photodissociation dynamics of CHI2Cl and its role as a photolytic precursor for a chlorinated Criegee intermediate. Physical Chemistry Chemical Physics, 2017, 19, 31039-31053.	1.3	3
8	Near-UV photodissociation dynamics of CH ₂ 1 ₂ . Physical Chemistry Chemical Physics, 2016, 18, 11091-11103.	1.3	19
9	Reactions between Criegee Intermediates and the Inorganic Acids HCl and HNO ₃ : Kinetics and Atmospheric Implications. Angewandte Chemie, 2016, 128, 10575-10578.	1.6	15
10	Decomposing the First Absorption Band of OCS Using Photofragment Excitation Spectroscopy. Journal of Physical Chemistry A, 2016, 120, 6745-6752.	1.1	6
11	Dynamics and spectroscopy of CH2OO excited electronic states. Physical Chemistry Chemical Physics, 2016, 18, 10941-10946.	1.3	19
12	Reactions between Criegee Intermediates and the Inorganic Acids HCl and HNO ₃ : Kinetics and Atmospheric Implications. Angewandte Chemie - International Edition, 2016, 55, 10419-10422.	7.2	82
13	High resolution absolute absorption cross sections of the B̃ ¹ A′–X̃ ¹ A′ transition of the CH ₂ OO biradical. Physical Chemistry Chemical Physics, 2015, 17, 32539-32546.	1.3	42
14	Kinetics of IO Production in the CH ₂ I + O ₂ Reaction Studied by Cavity Ring-Down Spectroscopy. Journal of Physical Chemistry A, 2015, 119, 8981-8990.	1.1	16
15	Formation of Vibrationally Excited Methyl Radicals Following State-Specific Excitation of Methylamine. Journal of Physical Chemistry A, 2014, 118, 9844-9852.	1.1	11
16	Observation of NH X ³ Σ [–] as a Primary Product of Methylamine Photodissociation: Evidence of Roaming-Mediated Intersystem Crossing?. Journal of Physical Chemistry Letters, 2012, 3, 1341-1345.	2.1	20
17	Temperature dependent structured absorption spectra of molecular chlorine. Physical Chemistry Chemical Physics, 2011, 13, 15318.	1.3	13
18	Communication: A new spectroscopic window on hydroxyl radicals using UV + VUV resonant ionization. Journal of Chemical Physics, 2011, 134, 241102.	1.2	21

CRAIG MURRAY

#	Article	IF	CITATIONS
19	Analysis of the HOOO torsional potential. Journal of Chemical Physics, 2011, 134, 044304.	1.2	31
20	Weakly Bound Molecules in the Atmosphere: A Case Study of HOOO. Accounts of Chemical Research, 2009, 42, 419-427.	7.6	52
21	State-resolved distribution of OH X Î2 products arising from electronic quenching of OH A Σ2+ by N2. Journal of Chemical Physics, 2009, 130, 104307.	1.2	17
22	Quantum State Distribution of the OH X ² Î Products from Collisional Quenching of OH A ² Σ ⁺ by O ₂ and CO ₂ . Journal of Physical Chemistry A, 2009, 113, 6851-6858.	1.1	19
23	Observation of ν1+νn combination bands of the HOOO and DOOO radicals using infrared action spectroscopy. Journal of Chemical Physics, 2008, 128, 244313.	1.2	43
24	Electronic quenching of OH A ² Σ ⁺ radicals in single collision events with H ₂ and D ₂ : a comprehensive quantum state distribution of the OH X ² Πproducts. Physical Chemistry Chemical Physics, 2008, 10, 1424-1432.	1.3	30
25	Infrared Action Spectroscopy of the OD Stretch Fundamental and Overtone Transitions of the DOOO Radical. Journal of Physical Chemistry A, 2008, 112, 9269-9276.	1.1	34
26	Electronic quenching of OH AΣ+2 radicals in single collision events with molecular hydrogen: Quantum state distribution of the OH XÎ2 products. Journal of Chemical Physics, 2007, 126, 204316.	1.2	34
27	Product branching between reactive and nonreactive pathways in the collisional quenching of OH AΣ+2 radicals by H2. Journal of Chemical Physics, 2007, 127, 151101.	1.2	28
28	Photodissociation dynamics of methyl nitrate at 193 nm: energy disposal in methoxy and nitrogen dioxide products. Physical Chemistry Chemical Physics, 2007, 9, 262-271.	1.3	8
29	Stability of the Hydrogen Trioxy Radical via Infrared Action Spectroscopy. Journal of Physical Chemistry A, 2007, 111, 4727-4730.	1.1	56
30	Infrared Action Spectroscopy and Dissociation Dynamics of the HOOO Radical. Journal of Physical Chemistry A, 2007, 111, 11592-11601.	1.1	60
31	Reaction Optimization and Mechanism in Maleimide [5 + 2] Photocycloaddition:Â A Dual Approach Using Tunable UV Lasers and Time-Dependent DFT. Journal of Organic Chemistry, 2007, 72, 1449-1457.	1.7	33
32	How do the structures of polyatomic molecules affect their reaction dynamics?. Physica Scripta, 2006, 73, C14-C19.	1.2	5
33	The Dynamics of Chlorine-Atom Reactions with Polyatomic Organic Molecules. ChemInform, 2005, 36, no.	0.1	0
34	H-atom abstraction dynamics of reactions between Cl atoms and heterocyclic organic molecules. Molecular Physics, 2005, 103, 1785-1796.	0.8	8
35	Stereodynamics of Chlorine Atom Reactions with Organic Molecules. Journal of Physical Chemistry A, 2005, 109, 11093-11102.	1.1	39
36	Nonadiabatic dynamics in the CH3+HCl→CH4+Cl(PJ2) reaction. Journal of Chemical Physics, 2005, 122, 101101.	1.2	22

CRAIG MURRAY

#	Article	IF	CITATIONS
37	Imaging the quantum-state specific differential cross sections of HCl formed from reactions of chlorine atoms with methanol and dimethyl ether. Journal of Chemical Physics, 2004, 120, 2230-2237.	1.2	24
38	On-the-flyab initiotrajectory calculations of the dynamics of Cl atom reactions with methane, ethane and methanol. Journal of Chemical Physics, 2004, 120, 186-198.	1.2	69
39	The dynamics of the H-atom abstraction reactions between chlorine atoms and the methyl halides. Chemical Physics, 2004, 301, 239-249.	0.9	39
40	Imaging the Dynamics of Reactions of Chlorine Atoms with Methyl Halidesâ€. Journal of Physical Chemistry A, 2004, 108, 7909-7914.	1.1	15
41	The dynamics of chlorine-atom reactions with polyatomic organic molecules. International Reviews in Physical Chemistry, 2004, 23, 435-482.	0.9	94
42	The product branching and dynamics of the reaction of chlorine atoms with methylamine. Physical Chemistry Chemical Physics, 2003, 5, 1205-1212.	1.3	41
43	The dynamics of formation of HCl products from the reaction of Cl atoms with methanol, ethanol, and dimethyl ether. Journal of Chemical Physics, 2002, 117, 5692-5706.	1.2	69
44	Rotational energy transfer in collisions of CH A2Δ, v = 0 with Ar, N2and CO2. Physical Chemistry Chemical Physics, 2002, 4, 5768-5777.	1.3	9
45	Rotational-state resolved coupling of CH A 2Δ and B 2Σ- in collisions with CO2. Physical Chemistry Chemical Physics, 2000, 2, 5553-5559.	1.3	9
46	State-specific collisional coupling of the CH A 2Δ and B 2Σ- states. Physical Chemistry Chemical Physics, 2000, 2, 461-471.	1.3	27