Robert Chunhua Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/354367/publications.pdf

Version: 2024-02-01

84 papers 4,946 citations

28 h-index 60 g-index

89 all docs 89 docs citations

89 times ranked

7843 citing authors

#	Article	IF	CITATIONS
1	Pterostilbene alleviates liver ischemia/reperfusion injury via PINK1-mediated mitophagy. Journal of Pharmacological Sciences, 2022, 148, 19-30.	2.5	14
2	Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor clinical outcomes in patients with gastric cancer. Theranostics, 2022, 12, 620-638.	10.0	94
3	The role of phosphatidylserine on the membrane in immunity and blood coagulation. Biomarker Research, 2022, 10, 4.	6.8	30
4	Protective Effect of Mesenchymal Stem Cells on Isolated Islets Survival and Against Hypoxia Associated With the HIF-1α/PFKFB3 Pathway. Cell Transplantation, 2022, 31, 096368972110731.	2.5	3
5	LncRNA LYPLAL1-AS1 rejuvenates human adipose-derived mesenchymal stem cell senescence via transcriptional MIRLET7B inactivation. Cell and Bioscience, 2022, 12, 45.	4.8	9
6	Largeâ€scale isolation of functional dermal papilla cells using novel surface marker <scp>LEPTIN R</scp> eceptor. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 675-681.	1.5	1
7	Irisin mediates beiging of adipose-derived mesenchymal stem cells through binding to TRPC3. BMC Biology, 2022, 20, 95.	3.8	5
8	Pancreatic cancer cell exosomes induce lipidomics changes in adipocytes. Adipocyte, 2022, 11, 346-355.	2.8	10
9	Mesenchymal stem cell-based treatment in autoimmune liver diseases: underlying roles, advantages and challenges. Therapeutic Advances in Chronic Disease, 2021, 12, 204062232199344.	2.5	17
10	MSC-Derived Exosomes can Enhance the Angiogenesis of Human Brain MECs and Show Therapeutic Potential in a Mouse Model of Parkinson's Disease., 2021, 12, 1211.		41
11	HIF-1α promotes the migration and invasion of cancer-associated fibroblasts by miR-210., 2021, 12, 1794.		19
12	Lnc13728 facilitates human mesenchymal stem cell adipogenic differentiation via positive regulation of ZBED3 and downregulation of the WNT/β-catenin pathway. Stem Cell Research and Therapy, 2021, 12, 176.	5.5	15
13	The role of PKM2 nuclear translocation in the constant activation of the NF- $\hat{\mathbb{P}}$ B signaling pathway in cancer-associated fibroblasts. Cell Death and Disease, 2021, 12, 291.	6.3	36
14	A Pilot Study On Ex Vivo Expanded Autologous Adipose-Derived Stem Cells of Improving Fat Retention in Localized Scleroderma Patients. Stem Cells Translational Medicine, 2021, 10, 1148-1156.	3.3	21
15	Long noncoding RNA LYPLAL1-AS1 regulates adipogenic differentiation of human mesenchymal stem cells by targeting desmoplakin and inhibiting the Wnt \hat{l}^2 -catenin pathway. Cell Death Discovery, 2021, 7, 105.	4.7	8
16	Combined NOX/ROS/PKC Signaling Pathway and Metabolomic Analysis Reveals the Mechanism of TRAM34-Induced Endothelial Progenitor Cell Senescence. Stem Cells and Development, 2021, 30, 671-682.	2.1	6
17	Long Non-coding RNA Regulation of Mesenchymal Stem Cell Homeostasis and Differentiation: Advances, Challenges, and Perspectives. Frontiers in Cell and Developmental Biology, 2021, 9, 711005.	3.7	7
18	Gastric Cancer Cell-Derived Exosomes Can Regulate the Biological Functions of Mesenchymal Stem Cells by Inducing the Expression of Circular RNA circ_0004303. Stem Cells and Development, 2021, 30, 830-842.	2.1	12

#	Article	IF	CITATIONS
19	Slight upâ€regulation of Kir2.1 channel promotes endothelial progenitor cells to transdifferentiate into a pericyte phenotype by Akt/mTOR/Snail pathway. Journal of Cellular and Molecular Medicine, 2021, 25, 10088-10100.	3.6	4
20	Mesenchymal stem cell treatment improves outcome of COVID-19 patients via multiple immunomodulatory mechanisms. Cell Research, 2021, 31, 1244-1262.	12.0	81
21	Mesenchymal stem cell-derived small extracellular vesicles mitigate oxidative stress-induced senescence in endothelial cells via regulation of miR-146a/Src. Signal Transduction and Targeted Therapy, 2021, 6, 354.	17.1	80
22	Cancer-Associated Fibroblasts Promote the Upregulation of PD-L1 Expression Through Akt Phosphorylation in Colorectal Cancer. Frontiers in Oncology, 2021, 11, 748465.	2.8	12
23	Adipose-derived mesenchymal stem cells (AD-MSCs) in the treatment for psoriasis: results of a single-arm pilot trial. Annals of Translational Medicine, 2021, 9, 1653-1653.	1.7	4
24	Identification of alpha-enolase as a potential immunogenic molecule during allogeneic transplantation of human adipose-derived mesenchymal stromal cells. Cytotherapy, 2021, , 1396.	0.7	2
25	Astragaloside IV Promotes Antiphotoaging by Enhancing the Proliferation and Paracrine Activity of Adipose-Derived Stem Cells. Stem Cells and Development, 2020, 29, 1285-1293.	2.1	5
26	An Autophagy-Related Gene Signature Associated With Clinical Prognosis and Immune Microenvironment in Gliomas. Frontiers in Oncology, 2020, 10, 571189.	2.8	29
27	A survey of 434 clinical trials about coronavirus disease 2019 in China. Journal of Medical Virology, 2020, 92, 1715-1717.	5.0	4
28	COVID-19 in India: Are Biological and Environmental Factors Helping to Stem the Incidence and Severity?., 2020, 11, 480.		34
29	Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia., 2020, 11, 216.		921
30	Chlorzoxazone, a small molecule drug, augments immunosuppressive capacity of mesenchymal stem cells via modulation of FOXO3 phosphorylation. Cell Death and Disease, 2020, 11, 158.	6.3	18
31	Stem Cell–Based Therapy for Coronavirus Disease 2019. Stem Cells and Development, 2020, 29, 679-681.	2.1	30
32	Chondroprotective Effects of Combination Therapy of Acupotomy and Human Adipose Mesenchymal Stem Cells in Knee Osteoarthritis Rabbits via the GSK3β-Cyclin D1-CDK4/CDK6 Signaling Pathway. , 2020, 11, 1116.		12
33	MSC-derived exosomes promote recovery from traumatic brain injury via microglia/macrophages in rat. Aging, 2020, 12, 18274-18296.	3.1	79
34	Intracranial High-Grade Stenosis and Hyperhomocysteinemia Presenting as Cortical Subarachnoid Hemorrhage Concomitant with Acute Ischemic Stroke in a Young Man. American Journal of Case Reports, 2020, 21, e920606.	0.8	1
35	Mesenchymal stem cells and immune disorders: from basic science to clinical transition. Frontiers of Medicine, 2019, 13, 138-151.	3.4	34
36	SPRY4 is responsible for pathogenesis of adolescent idiopathic scoliosis by contributing to osteogenic differentiation and melatonin response of bone marrow-derived mesenchymal stem cells. Cell Death and Disease, 2019, 10, 805.	6.3	17

#	Article	lF	CITATIONS
37	Mechanisms of the Immunomodulation Effects of Bone Marrow-Derived Mesenchymal Stem Cells on Facial Nerve Injury in Sprague–Dawley Rats. Stem Cells and Development, 2019, 28, 489-496.	2.1	9
38	Long noncoding RNA ANCR inhibits the differentiation of mesenchymal stem cells toward definitive endoderm by facilitating the association of PTBP1 with ID2. Cell Death and Disease, 2019, 10, 492.	6.3	19
39	Differential miRNAs profile and bioinformatics analyses in bone marrow mesenchymal stem cells from adolescent idiopathic scoliosis patients. Spine Journal, 2019, 19, 1584-1596.	1.3	28
40	Exosomes secreted by mesenchymal stromal/stem cell-derived adipocytes promote breast cancer cell growth via activation of Hippo signaling pathway. Stem Cell Research and Therapy, 2019, 10, 117.	5.5	97
41	LincK contributes to breast tumorigenesis by promoting proliferation and epithelial-to-mesenchymal transition. Journal of Hematology and Oncology, 2019, 12, 19.	17.0	29
42	Effects of Gastric Cancer Cell-Derived Exosomes on the Immune Regulation of Mesenchymal Stem Cells by the NF-kB Signaling Pathway. Stem Cells and Development, 2019, 28, 464-476.	2.1	51
43	Long noncoding RNA lncAlS downregulation in mesenchymal stem cells is implicated in the pathogenesis of adolescent idiopathic scoliosis. Cell Death and Differentiation, 2019, 26, 1700-1715.	11.2	31
44	Curcumin suppresses osteogenesis by inducing miR-126a-3p and subsequently suppressing the WNT/LRP6 pathway. Aging, 2019, 11, 6983-6998.	3.1	19
45	Sca1 ⁺ Lin ^{â°'} CD117 ^{â°'} Mouse Bone Marrow-Derived Mesenchymal Stem Cells Regulate Immature Dendritic Cell Maturation by Inhibiting TLR4-IRF8 Signaling Via the Notch-RBP-J Pathway. Stem Cells and Development, 2018, 27, 556-565.	2.1	5
46	In Vitro Survival of Human Mesenchymal Stem Cells is Enhanced in Artificial Endolymph with Moderately High Concentrations of Potassium. Stem Cells and Development, 2018, 27, 658-670.	2.1	3
47	miR-450b Promotes Osteogenic Differentiation In Vitro and Enhances Bone Formation In Vivo by Targeting <i>BMP3</i> . Stem Cells and Development, 2018, 27, 600-611.	2.1	38
48	Si Nanowire Biosensors Using a FinFET Fabrication Process for Real Time Monitoring Cellular Ion Actitivies. , $2018, \ldots$		9
49	MiRNA-10b Reciprocally Stimulates Osteogenesis and Inhibits Adipogenesis Partly through the TGF-β/SMAD2 Signaling Pathway. , 2018, 9, 1058.		70
50	Generation of Functional Hepatocytes from Human Adipose-Derived MYC+ KLF4+ GMNN+ Stem Cells Analyzed by Single-Cell RNA-Seq Profiling. Stem Cells Translational Medicine, 2018, 7, 792-805.	3.3	12
51	Exosomes released by hepatocarcinoma cells endow adipocytes with tumor-promoting properties. Journal of Hematology and Oncology, 2018, 11, 82.	17.0	114
52	Low-Level Laser Effect on Proliferation, Migration, and Antiapoptosis of Mesenchymal Stem Cells. Stem Cells and Development, 2017, 26, 762-775.	2.1	68
53	Human Adipose-Derived Mesenchymal Stem Cell-Secreted CXCL1 and CXCL8 Facilitate Breast Tumor Growth By Promoting Angiogenesis. Stem Cells, 2017, 35, 2060-2070.	3.2	81
54	Reduced adipogenesis after lung tumor exosomes priming in human mesenchymal stem cells via TGFÎ ² signaling pathway. Molecular and Cellular Biochemistry, 2017, 435, 59-66.	3.1	41

#	Article	IF	CITATIONS
55	Low level laser (LLL) attenuate LPS-induced inflammatory responses in mesenchymal stem cells via the suppression of NF- 12 B signaling pathway in vitro. PLoS ONE, 2017, 12, e0179175.	2.5	14
56	Transcriptome Analysis of Long Noncoding RNAs in Toll-Like Receptor 3-Activated Mesenchymal Stem Cells. Stem Cells International, 2016, 2016, 1-11.	2.5	6
57	Coating with spermine-pullulan polymer enhances adenoviral transduction of mesenchymal stem cells. International Journal of Nanomedicine, 2016, Volume 11, 6763-6769.	6.7	6
58	Lung tumor exosomes induce a pro-inflammatory phenotype in mesenchymal stem cells via NFκB-TLR signaling pathway. Journal of Hematology and Oncology, 2016, 9, 42.	17.0	159
59	Optimization of Reference Genes for Normalization of Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction Results in Senescence Study of Mesenchymal Stem Cells. Stem Cells and Development, 2016, 25, 1355-1365.	2.1	19
60	Rapid generation of functional hepatocyte-like cells from human adipose-derived stem cells. Stem Cell Research and Therapy, 2016, 7, 105.	5.5	22
61	Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. Journal of Cell Science, 2016, 129, 2182-2189.	2.0	421
62	microRNA-23a inhibits osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting LRP5. International Journal of Biochemistry and Cell Biology, 2016, 72, 55-62.	2.8	55
63	Lung cancer exosomes initiate global long non-coding RNA changes in mesenchymal stem cells. International Journal of Oncology, 2016, 48, 681-689.	3.3	36
64	Mesenchymal Stem Cells and Cell Therapy for Bone Repair. Current Molecular Pharmacology, 2016, 9, 289-299.	1.5	5
65	Pathogenesis of glucocorticoid-induced avascular necrosis: A microarray analysis of gene expression in vitro. International Journal of Molecular Medicine, 2015, 36, 678-684.	4.0	22
66	Keloid-derived keratinocytes acquire a fibroblast-like appearance and an enhanced invasive capacity in a hypoxic microenvironment in vitro. International Journal of Molecular Medicine, 2015, 35, 1246-1256.	4.0	61
67	Preformed gelatin microcryogels as injectable cell carriers for enhanced skin wound healing. Acta Biomaterialia, 2015, 25, 291-303.	8.3	92
68	Long Noncoding RNA ADINR Regulates Adipogenesis by Transcriptionally Activating C/EBPÎ \pm . Stem Cell Reports, 2015, 5, 856-865.	4.8	154
69	Reduced Immunogenicity of Induced Pluripotent Stem Cells Derived from Sertoli Cells. PLoS ONE, 2014, 9, e106110.	2.5	16
70	Preclinical Safety Evaluation of Human Mesenchymal Stem Cell Transplantation in Cerebrum of Nonhuman Primates. International Journal of Toxicology, 2014, 33, 403-411.	1.2	7
71	Polyethyleneimine-coating enhances adenoviral transduction of mesenchymal stem cells. Biochemical and Biophysical Research Communications, 2014, 447, 383-387.	2.1	21
72	Generation of Highly Purified Neural Stem Cells from Human Adipose-Derived Mesenchymal Stem Cells by <i>Sox1 </i> Activation. Stem Cells and Development, 2014, 23, 515-529.	2.1	55

#	Article	IF	CITATIONS
73	The distribution of transplanted human mesenchymal stem cells in the CNS of young Macaca fascicularis. Brain Research, 2014, 1579, 1-9.	2.2	4
74	The roles of mesenchymal stem cells in tumor inflammatory microenvironment. Journal of Hematology and Oncology, 2014, 7, 14.	17.0	205
75	Epigenetically modulated LRRC33 acts as a negative physiological regulator for multiple Toll-like receptors. Journal of Leukocyte Biology, 2014, 96, 17-26.	3.3	15
76	Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model. Molecular and Cellular Biochemistry, 2013, 383, 13-20.	3.1	255
77	Stepwise Differentiation of Human Adipose-Derived Mesenchymal Stem Cells Toward Definitive Endoderm and Pancreatic Progenitor Cells by Mimicking Pancreatic Development In Vivo. Stem Cells and Development, 2013, 22, 1576-1587.	2.1	37
78	Effects of Human Mesenchymal Stem Cells on the Differentiation of Dendritic Cells from CD34+Cells. Stem Cells and Development, 2007, 16, 719-732.	2.1	99
79	Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochemical and Biophysical Research Communications, 2005, 332, 370-379.	2.1	659
80	Co-Transplantation Haploidentical Mesenchymal Stem Cells and Hematoietic Stem Cells with Nonmyeloablative Condition for Treatment of Relapsed or Refractory Acute Leukaemia Blood, 2005, 106, 5439-5439.	1.4	0
81	Mechanisms of and perspectives on the mesenchymal stem cell in immunotherapy. Translational Research, 2004, 143, 284-291.	2.3	54
82	Effects of IL-6/IL-2 fusion gene transfection on tumour cell biological characteristicsin vitro andin vivo. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 1997, 9, 281-284.	2.2	0
83	Overexpression and characterization of recombinant human fusion protein ILâ€6/ILâ€2 (ch925). Stem Cells, 1994, 12, 339-347.	3.2	5
84	Potential mesenchymal stem cell therapeutics for treating primary biliary cholangitis: advances, challenges, and perspectives. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	2