Xiaojun Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/354349/publications.pdf Version: 2024-02-01

Хилоним Сні

#	Article	IF	CITATIONS
1	Pursuing sustainable productivity with millions of smallholder farmers. Nature, 2018, 555, 363-366.	27.8	747
2	Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants – A soil microcosm experiment. Chemosphere, 2016, 147, 88-97.	8.2	199
3	Fertilization Shapes Bacterial Community Structure by Alteration of Soil pH. Frontiers in Microbiology, 2017, 8, 1325.	3.5	183
4	Bioavailability of Zn in ZnO nanoparticle-spiked soil and the implications to maize plants. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	81
5	Impacts of nitrogen fertilizer type and application rate on soil acidification rate under a wheat-maize double cropping system. Journal of Environmental Management, 2020, 270, 110888.	7.8	71
6	Impacts of farmland application of antibiotic-contaminated manures on the occurrence of antibiotic residues and antibiotic resistance genes in soil: A meta-analysis study. Chemosphere, 2022, 300, 134529.	8.2	63
7	Quantification of the contribution of nitrogen fertilization and crop harvesting to soil acidification in a wheat-maize double cropping system. Plant and Soil, 2019, 434, 167-184.	3.7	58
8	Long-term tobacco plantation induces soil acidification and soil base cation loss. Environmental Science and Pollution Research, 2016, 23, 5442-5450.	5.3	55
9	Seasonality in river export of nitrogen: A modelling approach for the Yangtze River. Science of the Total Environment, 2019, 671, 1282-1292.	8.0	52
10	Environmental impacts of pepper (Capsicum annuum L) production affected by nutrient management: A case study in southwest China. Journal of Cleaner Production, 2018, 171, 934-943.	9.3	46
11	Soil type shapes the antibiotic resistome profiles of long-term manured soil. Science of the Total Environment, 2021, 786, 147361.	8.0	39
12	Impacts of long-term nitrogen fertilization on acid buffering rates and mechanisms of a slightly calcareous clay soil. Geoderma, 2017, 305, 92-99.	5.1	30
13	Global direct nitrous oxide emissions from the bioenergy crop sugarcane (Saccharum spp.) Tj ETQq1 1 0.78431	4 rgBT /Ov	erlock 10 Tf
14	Agronomic Responses of Major Fruit Crops to Fertilization in China: A Meta-Analysis. Agronomy, 2020, 10, 15.	3.0	27
15	Modeling the Contribution of Crops to Nitrogen Pollution in the Yangtze River. Environmental Science & Technology, 2020, 54, 11929-11939.	10.0	26
16	Global reactive nitrogen loss in orchard systems: A review. Science of the Total Environment, 2022, 821, 153462.	8.0	22
17	Carbon Footprint Analyses and Potential Carbon Emission Reduction in China's Major Peach Orchards. Sustainability, 2018, 10, 2908.	3.2	21
18	Environmental mitigation potential by improved nutrient managements in pear (Pyrus pyrifolia L.) orchards based on life cycle assessment: A case study in the North China Plain. Journal of Cleaner Production, 2020, 262, 121273.	9.3	21

Xiaojun Shi

#	Article	IF	CITATIONS
19	Challenges and strategies for agricultural green development in the Yangtze River Basin. Journal of Integrative Environmental Sciences, 2021, 18, 37-54.	2.5	21
20	Mapping the Environmental Cost of a Typical Citrus-Producing County in China: Hotspot and Optimization. Sustainability, 2020, 12, 1827.	3.2	20
21	Carbon sequestration dynamic, trend and efficiency as affected by 22â€year fertilization under a rice–wheat cropping system. Journal of Plant Nutrition and Soil Science, 2016, 179, 652-660.	1.9	19
22	Mitigating phosphorus pollution from detergents in the surface waters of China. Science of the Total Environment, 2022, 804, 150125.	8.0	18
23	Spatial and Seasonal Variations in the Abundance of Nitrogen-Transforming Genes and the Microbial Community Structure in Freshwater Lakes with Different Trophic Statuses. International Journal of Environmental Research and Public Health, 2019, 16, 2298.	2.6	17
24	Grafting alleviates potassium stress and improves growth in tobacco. BMC Plant Biology, 2019, 19, 130.	3.6	16
25	Mitigating magnesium deficiency for sustainable citrus production: A case study in Southwest China. Scientia Horticulturae, 2022, 295, 110832.	3.6	15
26	Nitrogen fertilization stimulates nitrogen assimilation and modifies nitrogen partitioning in the spring shoot leaves of citrus (Citrus reticulata Blanco) trees. Journal of Plant Physiology, 2021, 267, 153556.	3.5	14
27	Fruit Yields Depend on Biomass and Nutrient Accumulations in New Shoots of Citrus Trees. Agronomy, 2020, 10, 1988.	3.0	12
28	Integrated physiological, proteome and gene expression analyses provide new insights into nitrogen remobilization in citrus trees. Tree Physiology, 2022, 42, 1628-1645.	3.1	12
29	Improved nitrogen use efficiency, carbon sequestration and reduced environmental contamination under a gradient of manure application. Soil and Tillage Research, 2022, 220, 105386.	5.6	10
30	Bacterial Diversity and Community in Response to Long-Term Nitrogen Fertilization Gradient in Citrus Orchard Soils. Diversity, 2021, 13, 282.	1.7	9
31	The effects of ground cover management on fruit yield and quality: a meta-analysis. Archives of Agronomy and Soil Science, 2022, 68, 1890-1902.	2.6	8
32	Flue-cured tobacco (Nicotiana tabacum L.) leaf quality can be improved by grafting with potassium-efficient rootstock. Field Crops Research, 2021, 274, 108305.	5.1	8
33	Soil acidification under long-term tobacco plantation results in alterations of mineralogical properties in an Alisol. Archives of Agronomy and Soil Science, 2016, 62, 1033-1040.	2.6	7
34	Effects of 22-year fertilisation on the soil organic C, N, and theirs fractions under a rice-wheat cropping system. Archives of Agronomy and Soil Science, 2021, 67, 767-777.	2.6	7
35	Adaboost-Based Machine Learning Improved the Modeling Robust and Estimation Accuracy of Pear Leaf Nitrogen Concentration by In-Field VIS-NIR Spectroscopy. Sensors, 2021, 21, 6260.	3.8	7
36	Response of grafting tobacco to low potassium stress. BMC Plant Biology, 2020, 20, 286.	3.6	6

Xiaojun Shi

#	Article	IF	CITATIONS
37	A Small Amount of Nitrogen Transfer from White Clover to Citrus Seedling via Common Arbuscular Mycorrhizal Networks. Agronomy, 2021, 11, 32.	3.0	5
38	Estimation of Watermelon Nutrient Requirements Based on the QUEFTS Model. Agronomy, 2020, 10, 1776.	3.0	4
39	Nitrogen Management Based on Visible/Near Infrared Spectroscopy in Pear Orchards. Remote Sensing, 2021, 13, 927.	4.0	2
40	Optimal N management improves crop yields and soil carbon, nitrogen sequestration in Chinese cabbage-maize rotation. Archives of Agronomy and Soil Science, 2023, 69, 1071-1084.	2.6	2
41	Spatioâ€ŧemporal assessment of greenhouse gas emission from rapeseed production in China by coupling nutrient flows model with <scp>LCA</scp> approach. Food and Energy Security, 0, , .	4.3	2
42	Environmental Assessment of Furrow vs. Drip Irrigated Pear (Pyrus bretschneideri Rehd.) Production Systems in Loess Plateau (China). Agronomy, 2021, 11, 1201.	3.0	1