Carl Bernacchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3543331/publications.pdf

Version: 2024-02-01

36271 24961 13,053 140 51 109 citations h-index g-index papers 143 143 143 11896 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany, 2009, 60, 2859-2876.	2.4	1,343
2	Fitting photosynthetic carbon dioxide response curves for C ₃ leaves. Plant, Cell and Environment, 2007, 30, 1035-1040.	2.8	1,084
3	Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany, 2003, 54, 2393-2401.	2.4	969
4	Temperature Response of Mesophyll Conductance. Implications for the Determination of Rubisco Enzyme Kinetics and for Limitations to Photosynthesis in Vivo. Plant Physiology, 2002, 130, 1992-1998.	2.3	659
5	A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Global Change Biology, 2002, 8, 695-709.	4.2	426
6	In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant, Cell and Environment, 2003, 26, 1419-1430.	2.8	391
7	The Costs of Photorespiration to Food Production Now and in the Future. Annual Review of Plant Biology, 2016, 67, 107-129.	8.6	277
8	Decreases in Stomatal Conductance of Soybean under Open-Air Elevation of [CO2] Are Closely Coupled with Decreases in Ecosystem Evapotranspiration. Plant Physiology, 2007, 143, 134-144.	2.3	233
9	Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nature Plants, 2016, 2, 16132.	4.7	229
10	ECOSTRESS: NASA's Next Generation Mission to Measure Evapotranspiration From the International Space Station. Water Resources Research, 2020, 56, e2019WR026058.	1.7	220
11	Carbon budget of mature no-till ecosystem in North Central Region of the United States. Agricultural and Forest Meteorology, 2005, 130, 59-69.	1.9	195
12	Leaf photosynthesis and carbohydrate dynamics of soybeans grown throughout their life-cycle under Free-Air Carbon dioxide Enrichment. Plant, Cell and Environment, 2004, 27, 449-458.	2.8	182
13	The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. Journal of Experimental Botany, 2021, 72, 2822-2844.	2.4	182
14	The growth of soybean under free air [CO2] enrichment (FACE) stimulates photosynthesis while decreasing in vivo Rubisco capacity. Planta, 2005, 220, 434-446.	1.6	181
15	Towards a multiscale crop modelling framework for climate change adaptation assessment. Nature Plants, 2020, 6, 338-348.	4.7	181
16	Increased C availability at elevated carbon dioxide concentration improves N assimilation in a legume. Plant, Cell and Environment, 2006, 29, 1651-1658.	2.8	172
17	Reduced Nitrogen Losses after Conversion of Row Crop Agriculture to Perennial Biofuel Crops. Journal of Environmental Quality, 2013, 42, 219-228.	1.0	171
18	Will photosynthesis of maize (Zea mays) in the US Corn Belt increase in future [CO2] rich atmospheres? An analysis of diurnal courses of CO2 uptake under free-air concentration enrichment (FACE). Global Change Biology, 2004, 10, 951-962.	4.2	167

#	Article	IF	CITATIONS
19	Global Warming Can Negate the Expected CO2 Stimulation in Photosynthesis and Productivity for Soybean Grown in the Midwestern United States Â. Plant Physiology, 2013, 162, 410-423.	2.3	161
20	Productivity of North American grasslands is increased under future climate scenarios despite rising aridity. Nature Climate Change, 2016, 6, 710-714.	8.1	153
21	Modelling <scp>C</scp> ₃ photosynthesis from the chloroplast to the ecosystem. Plant, Cell and Environment, 2013, 36, 1641-1657.	2.8	145
22	Incorporation of crop phenology in Simple Biosphere Model (SiBcrop) to improve land-atmosphere carbon exchanges from croplands. Biogeosciences, 2009, 6, 969-986.	1.3	144
23	Sunâ€Induced Chlorophyll Fluorescence, Photosynthesis, and Light Use Efficiency of a Soybean Field from Seasonally Continuous Measurements. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 610-623.	1.3	138
24	An In Vivo Analysis of the Effect of Season-Long Open-Air Elevation of Ozone to Anticipated 2050 Levels on Photosynthesis in Soybean. Plant Physiology, 2004, 135, 2348-2357.	2.3	135
25	Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at future CO2and ozone concentrations for 3 years under fully open-air field conditions. Plant, Cell and Environment, 2006, 29, 2077-2090.	2.8	132
26	Altered Belowground Carbon Cycling Following Land-Use Change to Perennial Bioenergy Crops. Ecosystems, 2013, 16, 508-520.	1.6	132
27	Greenness indices from digital cameras predict the timing and seasonal dynamics of canopyâ€scale photosynthesis. Ecological Applications, 2015, 25, 99-115.	1.8	129
28	Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites. Agricultural and Forest Meteorology, 2021, 301-302, 108350.	1.9	125
29	High-throughput field phenotyping using hyperspectral reflectance and partial least squares regression (PLSR) reveals genetic modifications to photosynthetic capacity. Remote Sensing of Environment, 2019, 231, 111176.	4.6	123
30	A regional comparison of water use efficiency for miscanthus, switchgrass and maize. Agricultural and Forest Meteorology, 2012, 164, 82-95.	1.9	120
31	Long-term growth of soybean at elevated [CO2] does not cause acclimation of stomatal conductance under fully open-air conditions. Plant, Cell and Environment, 2006, 29, 1794-1800.	2.8	119
32	Carbon exchange by establishing biofuel crops in Central Illinois. Agriculture, Ecosystems and Environment, 2011, 144, 319-329.	2.5	115
33	Photosynthesis, Light Use Efficiency, and Yield of Reduced-Chlorophyll Soybean Mutants in Field Conditions. Frontiers in Plant Science, 2017, 8, 549.	1.7	114
34	Canopy warming caused photosynthetic acclimation and reduced seed yield in maize grown at ambient and elevated [<scp>CO</scp> ₂]. Global Change Biology, 2015, 21, 4237-4249.	4.2	111
35	Photosynthesis and stomatal conductance responses of poplars to freeâ€air CO 2 enrichment (PopFACE) during the first growth cycle and immediately following coppice. New Phytologist, 2003, 159, 609-621.	3.5	110
36	Heat waves imposed during early pod development in soybean (<i><scp>G</scp>lycine max</i>) cause significant yield loss despite a rapid recovery from oxidative stress. Global Change Biology, 2015, 21, 3114-3125.	4.2	108

3

#	Article	IF	Citations
37	Redefining droughts for the U.S. Corn Belt: The dominant role of atmospheric vapor pressure deficit over soil moisture in regulating stomatal behavior of Maize and Soybean. Agricultural and Forest Meteorology, 2020, 287, 107930.	1.9	90
38	Terrestrial Ecosystems in a Changing Environment: A Dominant Role for Water. Annual Review of Plant Biology, 2015, 66, 599-622.	8.6	89
39	Hyperspectral Leaf Reflectance as Proxy for Photosynthetic Capacities: An Ensemble Approach Based on Multiple Machine Learning Algorithms. Frontiers in Plant Science, 2019, 10, 730.	1.7	89
40	Can fast-growing plantation trees escape biochemical down-regulation of photosynthesis when grown throughout their complete production cycle in the open air under elevated carbon dioxide?. Plant, Cell and Environment, 2006, 29, 1235-1244.	2.8	87
41	Cropland carbon fluxes in the United States: increasing geospatial resolution of inventoryâ€based carbon accounting. Ecological Applications, 2010, 20, 1074-1086.	1.8	86
42	Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell and Environment, 2001, 24, 253-259.	2.8	85
43	Deriving high-spatiotemporal-resolution leaf area index for agroecosystems in the U.S. Corn Belt using Planet Labs CubeSat and STAIR fusion data. Remote Sensing of Environment, 2020, 239, 111615.	4.6	84
44	Consensus, uncertainties and challenges for perennial bioenergy crops and land use. GCB Bioenergy, 2018, 10, 150-164.	2.5	80
45	Simulated heat waves during maize reproductive stages alter reproductive growth but have no lasting effect when applied during vegetative stages. Agriculture, Ecosystems and Environment, 2017, 240, 162-170.	2.5	73
46	Water use efficiency of perennial and annual bioenergy crops in central Illinois. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 581-589.	1.3	71
47	Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion by fieldâ€grown maize. Global Change Biology, 2013, 19, 1572-1584.	4.2	71
48	Radiance-based NIR _v as a proxy for GPP of corn and soybean. Environmental Research Letters, 2020, 15, 034009.	2.2	63
49	Ecohydrological responses of dense canopies to environmental variability: 1. Interplay between vertical structure and photosynthetic pathway. Journal of Geophysical Research, 2010, 115, .	3.3	61
50	Expression of cyanobacterial FBP/SBPase in soybean prevents yield depression under future climate conditions. Journal of Experimental Botany, 2017, 68, erw435.	2.4	61
51	Impacts of elevated <scp><scp>CO</scp></scp> ₂ concentration on the productivity and surface energy budget of the soybean and maize agroecosystem in the Midwest <scp>USA</scp> . Global Change Biology, 2013, 19, 2838-2852.	4.2	60
52	Dissecting the nonlinear response of maize yield to high temperature stress with modelâ€data integration. Global Change Biology, 2019, 25, 2470-2484.	4.2	56
53	Estimating photosynthetic traits from reflectance spectra: A synthesis of spectral indices, numerical inversion, and partial least square regression. Plant, Cell and Environment, 2020, 43, 1241-1258.	2.8	56
54	A comparison of canopy evapotranspiration for maize and two perennial grasses identified as potential bioenergy crops. GCB Bioenergy, 2010, 2, 157-168.	2.5	55

#	Article	IF	Citations
55	Gap filling strategies and error in estimating annual soil respiration. Global Change Biology, 2013, 19, 1941-1952.	4.2	54
56	Plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging. Journal of Experimental Botany, 2020, 71, 2312-2328.	2.4	54
57	The conversion of the corn/soybean ecosystem to no-till agriculture may result in a carbon sink. Global Change Biology, 2005, 11, 051013014052001-???.	4.2	52
58	Biomass allocation in old-field annual species grown in elevated CO2 environments: no evidence for optimal partitioning. Global Change Biology, 2000, 6, 855-863.	4.2	51
59	The influence of photosynthetic acclimation to rising CO ₂ and warmer temperatures on leaf and canopy photosynthesis models. Global Biogeochemical Cycles, 2015, 29, 194-206.	1.9	51
60	A physical model-based method for retrieving urban land surface temperatures under cloudy conditions. Remote Sensing of Environment, 2019, 230, 111191.	4.6	51
61	The impacts of <i>Miscanthus</i> \tilde{A} — <i>giganteus</i> production on the Midwest US hydrologic cycle. GCB Bioenergy, 2010, 2, 180-191.	2.5	50
62	Yield response of fieldâ€grown soybean exposed to heat waves under current and elevated [CO ₂]. Global Change Biology, 2019, 25, 4352-4368.	4.2	47
63	Gross primary production is stimulated for three Populus species grown under free-air CO2 enrichment from planting through canopy closure. Global Change Biology, 2005, 11, 644-656.	4.2	45
64	Nitrogen deposition and greenhouse gas emissions from grasslands: uncertainties and future directions. Global Change Biology, 2016, 22, 1348-1360.	4.2	45
65	CO2 uptake and ecophysiological parameters of the grain crops of midcontinent North America: Estimates from flux tower measurements. Agriculture, Ecosystems and Environment, 2013, 164, 162-175.	2.5	42
66	Are we approaching a water ceiling to maize yields in the United States?. Ecosphere, 2019, 10, e02773.	1.0	42
67	The important but weakening maize yield benefit of grain filling prolongation in the US Midwest. Global Change Biology, 2018, 24, 4718-4730.	4.2	41
68	Increased temperatures may safeguard the nutritional quality of crops under future elevated <scp>CO</scp> ₂ concentrations. Plant Journal, 2019, 97, 872-886.	2.8	41
69	Productivity and Carbon Dioxide Exchange of Leguminous Crops: Estimates from Flux Tower Measurements. Agronomy Journal, 2014, 106, 545-559.	0.9	40
70	Civil disobedience movements such as School Strike for the Climate are raising public awareness of the climate change emergency. Global Change Biology, 2020, 26, 1042-1044.	4.2	40
71	Essential outcomes for COP26. Global Change Biology, 2022, 28, 1-3.	4.2	40
72	Elevated <scp>CO</scp> ₂ and temperature increase soil C losses from a soybean–maize ecosystem. Global Change Biology, 2017, 23, 435-445.	4.2	39

#	Article	IF	Citations
73	Satellite footprint data from OCO-2 and TROPOMI reveal significant spatio-temporal and inter-vegetation type variabilities of solar-induced fluorescence yield in the U.S. Midwest. Remote Sensing of Environment, 2020, 241, 111728.	4.6	38
74	Elevated CO2 significantly delays reproductive development of soybean under Free-Air Concentration Enrichment (FACE). Journal of Experimental Botany, 2009, 60, 2945-2951.	2.4	37
75	Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of soybean (Glycine max) at elevated [CO2] and temperatures under fully open air field conditions. Plant Science, 2014, 226, 136-146.	1.7	37
76	Biophysical impacts of climateâ€smart agriculture in the <scp>M</scp> idwest <scp>U</scp> nited <scp>S</scp> tates. Plant, Cell and Environment, 2015, 38, 1913-1930.	2.8	37
77	Modeling the Temperature Dependence of C3 Photosynthesis. Advances in Photosynthesis and Respiration, 2009, , 231-246.	1.0	37
78	The influence of drought and heat stress on longâ€ŧerm carbon fluxes of bioenergy crops grown in the Midwestern USA. Plant, Cell and Environment, 2016, 39, 1928-1940.	2.8	36
79	Quantifying highâ€temperature stress on soybean canopy photosynthesis: The unique role of sunâ€induced chlorophyll fluorescence. Global Change Biology, 2021, 27, 2403-2415.	4.2	36
80	Rising ozone concentrations decrease soybean evapotranspiration and water use efficiency whilst increasing canopy temperature. New Phytologist, 2012, 195, 164-171.	3.5	33
81	Alternative pathway to photorespiration protects growth and productivity at elevated temperatures in a model crop. Plant Biotechnology Journal, 2022, 20, 711-721.	4.1	33
82	Assessing the potential to decrease the Gulf of Mexico hypoxic zone with Midwest US perennial cellulosic feedstock production. GCB Bioenergy, 2017, 9, 858-875.	2.5	31
83	Candidate perennial bioenergy grasses have a higher albedo than annual row crops. GCB Bioenergy, 2016, 8, 818-825.	2.5	30
84	Influence of transient flooding on methane fluxes from subtropical pastures. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 965-977.	1.3	29
85	The carbon and nitrogen cycle impacts of reverting perennial bioenergy switchgrass to an annual maize crop rotation. GCB Bioenergy, 2020, 12, 941-954.	2.5	29
86	Photosynthesis in a CO2-Rich Atmosphere. Advances in Photosynthesis and Respiration, 2012, , 733-768.	1.0	28
87	Threshold Dynamics in Soil Carbon Storage for Bioenergy Crops. Environmental Science & Emp; Technology, 2014, 48, 12090-12098.	4.6	28
88	Ecohydrological responses of dense canopies to environmental variability: 2. Role of acclimation under elevated CO ₂ . Journal of Geophysical Research, 2010, 115, .	3.3	27
89	Soybean leaf hydraulic conductance does not acclimate to growth at elevated [CO2] or temperature in growth chambers or in the field. Annals of Botany, 2013, 112, 911-918.	1.4	27
90	Predicting the risk of soybean rust in Minnesota based on an integrated atmospheric model. International Journal of Biometeorology, 2009, 53, 509-521.	1.3	26

#	Article	IF	Citations
91	A physiological signal derived from sun-induced chlorophyll fluorescence quantifies crop physiological response to environmental stresses in the U.S. Corn Belt. Environmental Research Letters, 2021, 16, 124051.	2.2	25
92	The biophysical link between climate, water, and vegetation in bioenergy agro-ecosystems. Biomass and Bioenergy, 2014, 71, 187-201.	2.9	24
93	Seasonal Controls of CO ₂ and CH ₄ Dynamics in a Temporarily Flooded Subtropical Wetland. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005257.	1.3	24
94	Ecosystemâ€scale biogeochemical fluxes from three bioenergy crop candidates: How energy sorghum compares to maize and miscanthus. GCB Bioenergy, 2021, 13, 445-458.	2.5	24
95	The impact of water management practices on subtropical pasture methane emissions and ecosystem service payments. Ecological Applications, 2017, 27, 1199-1209.	1.8	23
96	On the Long-Term Hydroclimatic Sustainability of Perennial Bioenergy Crop Expansion over the United States. Journal of Climate, 2017, 30, 2535-2557.	1.2	23
97	Grazing alters net ecosystem C fluxes and the global warming potential of a subtropical pasture. Ecological Applications, 2018, 28, 557-572.	1.8	23
98	A review of transformative strategies for climate mitigation by grasslands. Science of the Total Environment, 2021, 799, 149466.	3.9	23
99	Growth of soybean at future tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion. Environmental Pollution, 2011, 159, 1464-1472.	3.7	22
100	Canopy warming accelerates development in soybean and maize, offsetting the delay in soybean reproductive development by elevated CO ₂ concentrations. Plant, Cell and Environment, 2018, 41, 2806-2820.	2.8	22
101	A reporting format for leaf-level gas exchange data and metadata. Ecological Informatics, 2021, 61, 101232.	2.3	22
102	Evaluation of DeNitrification DeComposition model for estimating ammonia fluxes from chemical fertilizer application. Agricultural and Forest Meteorology, 2017, 237-238, 123-134.	1.9	21
103	Season-long ammonia flux measurements above fertilized corn in central Illinois, USA, using relaxed eddy accumulation. Agricultural and Forest Meteorology, 2017, 239, 202-212.	1.9	21
104	The conversion of the corn/soybean ecosystem to no-till agriculture may result in a carbon sink. Global Change Biology, 2006, 12, 1585-1586.	4.2	20
105	Enhanced evapotranspiration was observed during extreme drought from Miscanthus, opposite of other crops. GCB Bioenergy, 2017, 9, 1306-1319.	2.5	20
106	Allometric analysis reveals relatively little variation in nitrogen versus biomass accrual in four plant species exposed to varying light, nutrients, water and CO ₂ . Plant, Cell and Environment, 2007, 30, 1216-1222.	2.8	19
107	Predicting Canopy Temperatures and Infrared Heater Energy Requirements for Warming Field Plots. Agronomy Journal, 2015, 107, 129-141.	0.9	19
108	The inverse relationship between solar-induced fluorescence yield and photosynthetic capacity: benefits for field phenotyping. Journal of Experimental Botany, 2021, 72, 1295-1306.	2.4	19

#	Article	IF	CITATIONS
109	Predicting biochemical acclimation of leaf photosynthesis in soybean under inâ€field canopy warming using hyperspectral reflectance. Plant, Cell and Environment, 2022, 45, 80-94.	2.8	19
110	Inconsistency of mesophyll conductance estimate causes the inconsistency for the estimates of maximum rate of Rubisco carboxylation among the linear, rectangular and non-rectangular hyperbola biochemical models of leaf photosynthesis—A case study of CO2 enrichment and leaf aging effects in soybean. Plant Science, 2014, 226, 49-60.	1.7	18
111	A Comparative Analysis of Anthropogenic CO 2 Emissions at City Level Using OCOâ€2 Observations: A Global Perspective. Earth's Future, 2019, 7, 1058-1070.	2.4	18
112	Development of a data-assimilation system to forecast agricultural systems: A case study of constraining soil water and soil nitrogen dynamics in the APSIM model. Science of the Total Environment, 2022, 820, 153192.	3.9	18
113	Advances in field-based high-throughput photosynthetic phenotyping. Journal of Experimental Botany, 2022, 73, 3157-3172.	2.4	17
114	Uncertainty in measurements of the photorespiratory CO2 compensation point and its impact on models of leaf photosynthesis. Photosynthesis Research, 2017, 132, 245-255.	1.6	16
115	Seasonal Evolution of Canopy Stomatal Conductance for a Prairie and Maize Field in the Midwestern United States from Continuous Carbonyl Sulfide Fluxes. Geophysical Research Letters, 2020, 47, e2019GL085652.	1.5	16
116	Can improved canopy light transmission ameliorate loss of photosynthetic efficiency in the shade? An investigation of natural variation in <i>Sorghum bicolor</i> . Journal of Experimental Botany, 2021, 72, 4965-4980.	2.4	16
117	Monitoring agroecosystem productivity and phenology at a national scale: A metric assessment framework. Ecological Indicators, 2021, 131, 108147.	2.6	16
118	Importance of biophysical effects on climate warming mitigation potential of biofuel crops over the conterminous United States. GCB Bioenergy, 2017, 9, 577-590.	2.5	15
119	Parameterizing Perennial Bioenergy Crops in Version 5 of the Community Land Model Based on Siteâ€Level Observations in the Central Midwestern United States. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001719.	1.3	15
120	Impacts of herbaceous bioenergy crops on atmospheric volatile organic composition and potential consequences for global climate change. GCB Bioenergy, 2013, 5, 375-383.	2.5	12
121	Ammonia flux measurements above a corn canopy using relaxed eddy accumulation and a flux gradient system. Agricultural and Forest Meteorology, 2019, 264, 104-113.	1.9	12
122	Limitations to photosynthesis at different temperatures in the leaves of Citrus limon. Brazilian Journal of Plant Physiology, 2007, 19, 141-147.	0.5	11
123	Soybean photosynthetic and biomass responses to carbon dioxide concentrations ranging from pre-industrial to the distant future. Journal of Experimental Botany, 2020, 71, 3690-3700.	2.4	11
124	Difference in seasonal peak timing of soybean far-red SIF and GPP explained by canopy structure and chlorophyll content. Remote Sensing of Environment, 2022, 279, 113104.	4.6	11
125	Conversion of grazed pastures to energy cane as a biofuel feedstock alters the emission of GHGs from soils in Southeastern United States. Biomass and Bioenergy, 2018, 108, 312-322.	2.9	9
126	The Role of Management on Methane Emissions From Subtropical Wetlands Embedded in Agricultural Ecosystems. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 2694-2708.	1.3	9

#	Article	IF	Citations
127	Emerging approaches to measure photosynthesis from the leaf to the ecosystem. Emerging Topics in Life Sciences, 2021, 5, 261-274.	1.1	9
128	Attributing differences of solar-induced chlorophyll fluorescence (SIF)-gross primary production (GPP) relationships between two C4 crops: corn and miscanthus. Agricultural and Forest Meteorology, 2022, 323, 109046.	1.9	9
129	Implementation of the effect of urease inhibitor on ammonia emissions following urea-based fertilizer application at a Zea mays field in central Illinois: A study with SURFATM-NH3 model. Agricultural and Forest Meteorology, 2019, 269-270, 78-87.	1.9	8
130	Drought imprints on crops can reduce yield loss: Nature's insights for food security. Food and Energy Security, 2022, 11 , e332.	2.0	8
131	High-throughput characterization, correlation, and mapping of leaf photosynthetic and functional traits in the soybean (<i>Glycine max</i>) nested association mapping population. Genetics, 2022, , .	1.2	8
132	A realistic meteorological assessment of perennial biofuel crop deployment: a Southern Great Plains perspective. GCB Bioenergy, 2017, 9, 1024-1041.	2.5	6
133	Recent Warming Has Resulted in Smaller Gains in Net Carbon Uptake in Northern High Latitudes. Journal of Climate, 2019, 32, 5849-5863.	1.2	6
134	A reply to "Comment on â€~Carbon budget of mature no-till ecosystem in North Central Region of the United States' by Dobermann et al.― Agricultural and Forest Meteorology, 2006, 136, 85-87.	1.9	5
135	Focus on Ecophysiology. Plant Physiology, 2016, 172, 619-621.	2.3	5
136	Nitrous oxide fluxes over establishing biofuel crops: Characterization of temporal variability using the crossâ€wavelet analysis. GCB Bioenergy, 2020, 12, 756-770.	2.5	4
137	Enhanced drought resistance of vegetation growth in cities due to urban heat, CO ₂ domes and O ₃ troughs. Environmental Research Letters, 2021, 16, 124052.	2.2	4
138	Photosynthesis, yield, energy balance, and waterâ€use of intercropped maize and soybean. Plant Direct, 2021, 5, e365.	0.8	3
139	Patch-Burn Grazing Impacts Forage Resources in Subtropical Humid Grazing Lands. Rangeland Ecology and Management, 2022, 84, 10-21.	1.1	3
140	Substantial carbon loss respired from a corn–soybean agroecosystem highlights the importance of careful management as we adapt to changing climate. Environmental Research Letters, 2022, 17, 054029.	2.2	2