Andrea-Nicole Richarz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/354324/publications.pdf

Version: 2024-02-01

29 papers 1,204 citations

430754 18 h-index 27 g-index

34 all docs

34 docs citations

times ranked

34

1468 citing authors

#	Article	IF	Citations
1	In silico toxicology protocols. Regulatory Toxicology and Pharmacology, 2018, 96, 1-17.	1.3	159
2	Regulatory assessment and risk management of chemical mixtures: challenges and ways forward. Critical Reviews in Toxicology, 2019, 49, 174-189.	1.9	135
3	Toward Good Read-Across Practice (GRAP) guidance. ALTEX: Alternatives To Animal Experimentation, 2016, 33, 149-166.	0.9	134
4	Principles underpinning the use of new methodologies in the risk assessment of cosmetic ingredients. Computational Toxicology, 2018, 7, 20-26.	1.8	102
5	Species analysis of metallothionein isoforms in human brain cytosols by use of capillary electrophoresis hyphenated to inductively coupled plasma–sector field mass spectrometry. Fresenius' Journal of Analytical Chemistry, 2001, 371, 764-774.	1.5	88
6	Ab initio chemical safety assessment: A workflow based on exposure considerations and non-animal methods. Computational Toxicology, 2017, 4, 31-44.	1.8	75
7	Quantitative structure-skin permeability relationships. Toxicology, 2017, 387, 27-42.	2.0	69
8	Genetic toxicology in silico protocol. Regulatory Toxicology and Pharmacology, 2019, 107, 104403.	1.3	57
9	Speciation analysis of trace elements in the brains of individuals with Alzheimer's disease with special emphasis on metallothioneins. Analytical and Bioanalytical Chemistry, 2002, 372, 412-417.	1.9	49
10	Assessing uncertainty in read-across: Questions to evaluate toxicity predictions based on knowledge gained from case studies. Computational Toxicology, 2019, 9, 1-11.	1.8	45
11	Identification and description of the uncertainty, variability, bias and influence in quantitative structure-activity relationships (QSARs) for toxicity prediction. Regulatory Toxicology and Pharmacology, 2019, 106, 90-104.	1.3	36
12	CZE-ICP-MS separation of metallothioneins in human brain cytosols: comparability of electropherograms obtained from different sample matrices. Analyst, The, 2003, 128, 576-580.	1.7	32
13	Artificial Intelligence for chemical risk assessment. Computational Toxicology, 2020, 13, 100114.	1.8	27
14	<i>In Silico</i> Prediction of Organ Level Toxicity: Linking Chemistry to Adverse Effects. Toxicological Research, 2017, 33, 173-182.	1.1	26
15	An ISA-TAB-Nano based data collection framework to support data-driven modelling of nanotoxicology. Beilstein Journal of Nanotechnology, 2015, 6, 1978-1999.	1.5	25
16	Exploring current read-across applications and needs among selected U.S. Federal Agencies. Regulatory Toxicology and Pharmacology, 2019, 106, 197-209.	1.3	23
17	Development of computational models for the prediction of the toxicity of nanomaterials. Perspectives in Science, 2015, 3, 27-29.	0.6	22
18	Grouping of multi-walled carbon nanotubes to read-across genotoxicity: A case study to evaluate the applicability of regulatory guidance. Computational Toxicology, 2019, 9, 22-35.	1.8	20

#	Article	IF	CITATIONS
19	A mode-of-action ontology model for safety evaluation of chemicals: Outcome of a series of workshops on repeated dose toxicity. Toxicology in Vitro, 2019, 59, 44-50.	1.1	19
20	Determination of protein-bound trace elements in human cell cytosols of different organs and different pathological states. Analyst, The, 2003, 128, 640-645.	1.7	15
21	Read-across of 90-day rat oral repeated-dose toxicity: A case study for selected 2-alkyl-1-alkanols. Computational Toxicology, 2017, 2, 28-38.	1.8	15
22	Automated workflows for modelling chemical fate, kinetics and toxicity. Toxicology in Vitro, 2017, 45, 249-257.	1.1	9
23	Big Data in Predictive Toxicology: Challenges, Opportunities and Perspectives. Issues in Toxicology, 2019, , 1-37.	0.2	9
24	Compilation of Data and Modelling of Nanoparticle Interactions and Toxicity in the NanoPUZZLES Project. Advances in Experimental Medicine and Biology, 2017, 947, 303-324.	0.8	8
25	Development of integrated in silico models for toxicity prediction focussing on cosmetic ingredients. Toxicology Letters, 2013, 221, S81.	0.4	0
26	CHAPTER 12. Role of Toxicological Big Data to Support Read-across for the Assessment of Chemicals. Issues in Toxicology, 2019, , 359-384.	0.2	0
27	Modeling of Nanomaterials for Safety Assessment: From Regulatory Requirements to Supporting Scientific Theories., 2019,, 1-97.		0
28	Read-Across to Fill Toxicological Data Gaps: Good Practice to Ensure Success with Nanoparticles. , 2019, , 381-400.		0
29	Current Developments and Recommendations in Computational Nanotoxicology in View of Regulatory Applications., 2019,, 99-155.		0