Andrea Menegon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3543011/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature, 2011, 476, 224-227.	13.7	941
2	Mutations in GDI1 are responsible for X-linked non-specific mental retardation. Nature Genetics, 1998, 19, 134-139.	9.4	304
3	Hypertension-associated point mutations in the adducin alpha and beta subunits affect actin cytoskeleton and ion transport Journal of Clinical Investigation, 1996, 97, 2815-2822.	3.9	232
4	Protein Kinase A-Mediated Synapsin I Phosphorylation Is a Central Modulator of Ca2+-Dependent Synaptic Activity. Journal of Neuroscience, 2006, 26, 11670-11681.	1.7	135
5	The Influence of Neuronal Density and Maturation on Network Activity of Hippocampal Cell Cultures: A Methodological Study. PLoS ONE, 2013, 8, e83899.	1.1	113
6	Deletion of the mental retardation gene Gdi1 impairs associative memory and alters social behavior in mice. Human Molecular Genetics, 2002, 11, 2567-2580.	1.4	100
7	Impaired striatal GABA transmission in experimental autoimmune encephalomyelitis. Brain, Behavior, and Immunity, 2011, 25, 947-956.	2.0	90
8	Focal Adhesion Kinase in Rat Central Nervous System. European Journal of Neuroscience, 1995, 7, 1810-1821.	1.2	81
9	FAK+and PYK2/CAKl ² , two related tyrosine kinases highly expressed in the central nervous system: similarities and differences in the expression pattern. European Journal of Neuroscience, 1999, 11, 3777-3788.	1.2	80
10	Phosphorylation of Synapsin I by cAMP-Dependent Protein Kinase Controls Synaptic Vesicle Dynamics in Developing Neurons. Journal of Neuroscience, 2005, 25, 7299-7308.	1.7	77
11	Phosphorylation by cAMP-dependent protein kinase is essential for synapsin-induced enhancement of neurotransmitter release in invertebrate neurons. Journal of Cell Science, 2004, 117, 5145-5154.	1.2	53
12	Identification of a developmentally regulated pathway of membrane retrieval in neuronal growth cones. Journal of Cell Science, 2008, 121, 3757-3769.	1.2	53
13	Neurite Extension Occurs in the Absence of Regulated Exocytosis in PC12 Subclones. Molecular Biology of the Cell, 1999, 10, 2919-2931.	0.9	43
14	Spatial and Temporal Regulation of Ca ²⁺ /Calmodulin-Dependent Protein Kinase II Activity in Developing Neurons. Journal of Neuroscience, 2002, 22, 7016-7026.	1.7	43
15	Phosphorylation of synapsin domain A is required for post-tetanic potentiation. Journal of Cell Science, 2007, 120, 3228-3237.	1.2	43
16	HIV-1 gp120 Glycoprotein Induces [Ca2+]i Responses not only in Type-2 but also Type-1 Astrocytes and Oligodendrocytes of the Rat Cerebellum. European Journal of Neuroscience, 1995, 7, 1333-1341.	1.2	38
17	Phosphorylation-dependent Effects of Synapsin IIa on Actin Polymerization and Network Formation. European Journal of Neuroscience, 1997, 9, 2712-2722.	1.2	38
18	Rapid and efficient CRISPR/Cas9 gene inactivation in human neurons during human pluripotent stem cell differentiation and direct reprogramming. Scientific Reports, 2016, 6, 37540.	1.6	38

ANDREA MENEGON

#	Article	IF	CITATIONS
19	A microfluidic platform for controlled biochemical stimulation of twin neuronal networks. Biomicrofluidics, 2012, 6, 024106.	1.2	37
20	Human iPSC-based models highlight defective glial and neuronal differentiation from neural progenitor cells in metachromatic leukodystrophy. Cell Death and Disease, 2018, 9, 698.	2.7	37
21	The synapsin domain E accelerates the exoendocytotic cycle of synaptic vesicles in cerebellar Purkinje cells. Journal of Cell Science, 2006, 119, 4257-4268.	1.2	36
22	Tat Protein from HIV-1 Activates MAP Kinase in Granular Neurons and Glial Cells from Rat Cerebellum. Biochemical and Biophysical Research Communications, 1997, 238, 800-805.	1.0	29
23	A Micro-Electrode Array device coupled to a laser-based system for the local stimulation of neurons by optical release of glutamate. Journal of Neuroscience Methods, 2008, 175, 70-78.	1.3	27
24	Validation of longâ€ŧerm primary neuronal cultures and network activity through the integration of reversibly bonded microbioreactors and MEA substrates. Biotechnology and Bioengineering, 2012, 109, 166-175.	1.7	27
25	Down-sizing of neuronal network activity and density of presynaptic terminals by pathological acidosis are efficiently prevented by Diminazene Aceturate. Brain, Behavior, and Immunity, 2015, 45, 263-276.	2.0	27
26	Intracisternal delivery of PEG-coated gold nanoparticles results in high brain penetrance and long-lasting stability. Journal of Nanobiotechnology, 2019, 17, 49.	4.2	18
27	PhotoMEA: An opto-electronic biosensor for monitoring in vitro neuronal network activity. BioSystems, 2007, 87, 150-155.	0.9	15
28	A novel environmental chamber for neuronal network multisite recordings. Biotechnology and Bioengineering, 2012, 109, 2553-2566.	1.7	15
29	A new cross-correlation algorithm for the analysis of "in vitro―neuronal network activity aimed at pharmacological studies. Journal of Neuroscience Methods, 2011, 199, 321-327.	1.3	13
30	A Photoprotein in Mouse Embryonic Stem Cells Measures Ca2+ Mobilization in Cells and in Animals. PLoS ONE, 2010, 5, e8882.	1.1	12
31	A new electro-optical approach for conductance measurement: an assay for the study of drugs acting on ligand-gated ion channels. Scientific Reports, 2017, 7, 44843.	1.6	10
32	From c-Photina® Mouse Embryonic Stem Cells to High-Throughput Screening of Differentiated Neural Cells via an Intermediate Step Enriched in Neural Precursor Cells. Journal of Biomolecular Screening, 2010, 15, 1132-1143.	2.6	5
33	Development of a benchâ€top device for parallel climateâ€controlled recordings of neuronal cultures activity with microelectrode arrays. Biotechnology and Bioengineering, 2016, 113, 403-413.	1.7	5
34	Fluorescence-Based Automated Screening Assay for the Study of the pH-Sensitive Channel ASIC1a. Journal of Biomolecular Screening, 2016, 21, 372-380.	2.6	5
35	Downregulation of Map Kinase Activity Signalled by HIV-1-gp120 Coat Protein in Granular Neurons and Glial Cells from Rat Cerebellum. Biochemical and Biophysical Research Communications, 1997, 240, 683-686.	1.0	4
36	Membrane potential changes occurring upon acidification influence the binding of small-molecule inhibitors to ASIC1a. Neuropharmacology, 2019, 148, 366-376.	2.0	3

#	Article	IF	CITATIONS
37	Synthesis and Characterization of Novel Mono- and Bis-Guanyl Hydrazones as Potent and Selective ASIC1 Inhibitors Able to Reduce Brain Ischemic Insult. Journal of Medicinal Chemistry, 2021, 64, 8333-8353.	2.9	3
38	Identification of Isoform 2 Acid-Sensing Ion Channel Inhibitors as Tool Compounds for Target Validation Studies in CNS. ACS Medicinal Chemistry Letters, 2019, 10, 627-632.	1.3	2
39	Phosphorylation of synapsin domain A is required for post-tetanic potentiation. Journal of Cell Science, 2007, 120, 3321-3321.	1.2	1
40	Validation of a bench-top culturing and electrophysiogical recording chamber for neurophysiological trials. , 2018, , .		1
41	Persistent acidosis affects electrophysiological transmission and synaptic homeostasis of neuronal networks. Journal of Neuroimmunology, 2014, 275, 146-147.	1.1	0