Margaret M Harnett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/354301/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lead optimisation efforts on a molecular prototype of the immunomodulatory parasitic protein ES-62. ChemistrySelect, 2022, .	1.5	0
2	Development of Acanthocheilonema viteae in Meriones shawi : Absence of microfilariae and production of active ESâ€62. Parasite Immunology, 2021, 43, e12803.	1.5	2
3	Suppression of inflammatory arthritis by the parasitic worm product ES-62 is associated with epigenetic changes in synovial fibroblasts. PLoS Pathogens, 2021, 17, e1010069.	4.7	10
4	Cytohesin-2/ARNO: A Novel Bridge Between Cell Migration and Immunoregulation in Synovial Fibroblasts. Frontiers in Immunology, 2021, 12, 809896.	4.8	4
5	Mini Review: Structure and Function of Nematode Phosphorylcholine-Containing Glycoconjugates. Frontiers in Tropical Diseases, 2021, 2, .	1.4	6
6	The parasitic worm product ES-62 promotes health- and life-span in a high calorie diet-accelerated mouse model of ageing. PLoS Pathogens, 2020, 16, e1008391.	4.7	22
7	Synthetic small molecule analogues of the immunomodulatory Acanthocheilonema viteae product ES-62 promote metabolic homeostasis during obesity in a mouse model. Molecular and Biochemical Parasitology, 2019, 234, 111232.	1.1	11
8	The parasitic worm product ES-62 normalises the gut microbiota bone marrow axis in inflammatory arthritis. Nature Communications, 2019, 10, 1554.	12.8	62
9	Small Molecule Analogues of the parasitic worm product ES-62 interact with the TIR domain of MyD88 to inhibit pro-inflammatory signalling. Scientific Reports, 2018, 8, 2123.	3.3	21
10	IL-33/ST2 signalling and crosstalk with FcÎμRI and TLR4 is targeted by the parasitic worm product, ES-62. Scientific Reports, 2018, 8, 4497.	3.3	25
11	Failure of the Anti-Inflammatory Parasitic Worm Product ES-62 to Provide Protection in Mouse Models of Type I Diabetes, Multiple Sclerosis, and Inflammatory Bowel Disease. Molecules, 2018, 23, 2669.	3.8	13
12	Synthetic analogues of the parasitic worm product ES-62 reduce disease development in in vivo models of lung fibrosis. Acta Tropica, 2018, 185, 212-218.	2.0	11
13	Protection Against Arthritis by the Parasitic Worm Product ES-62, and Its Drug-Like Small Molecule Analogues, Is Associated With Inhibition of Osteoclastogenesis. Frontiers in Immunology, 2018, 9, 1016.	4.8	31
14	From Christian de Duve to Yoshinori Ohsumi: MoreÂto autophagy than just dining at home. Biomedical Journal, 2017, 40, 9-22.	3.1	49
15	Apicomplexan autophagy and modulation of autophagy in parasite-infected host cells. Biomedical Journal, 2017, 40, 23-30.	3.1	31
16	Dendritic cells provide a therapeutic target for synthetic small molecule analogues of the parasitic worm product, ES-62. Scientific Reports, 2017, 7, 1704.	3.3	21
17	Can Parasitic Worms Cure the Modern World's Ills?. Trends in Parasitology, 2017, 33, 694-705.	3.3	44
18	The helminth product, ES-62 modulates dendritic cell responses by inducing the selective autophagolysosomal degradation of TLR-transducers, as exemplified by PKCI´. Scientific Reports, 2016, 6, 37276.	3.3	22

#	Article	IF	CITATIONS
19	The immunomodulatory parasitic worm product ES-62 reduces lupus-associated accelerated at a a mouse model. International Journal for Parasitology, 2015, 45, 203-207.	3.1	45
20	Prophylactic and therapeutic treatment with a synthetic analogue of a parasitic worm product prevents experimental arthritis and inhibits IL-11² production via NRF2-mediated counter-regulation of the inflammasome. Journal of Autoimmunity, 2015, 60, 59-73.	6.5	72
21	The Parasitic Worm Product ESâ€62 Targets Myeloid Differentiation Factor 88–Dependent Effector Mechanisms to Suppress Antinuclear Antibody Production and Proteinuria in MRL/ <i>lpr</i> Mice. Arthritis and Rheumatology, 2015, 67, 1023-1035.	5.6	48
22	Protective effect of small molecule analogues of the Acanthocheilonema viteae secreted product ES-62 on oxazolone-induced ear inflammation. Experimental Parasitology, 2015, 158, 18-22.	1.2	9
23	The role of individual protein kinase C isoforms in mouse mast cell function and their targeting by the immunomodulatory parasitic worm product, ES-62. Immunology Letters, 2015, 168, 31-40.	2.5	13
24	The parasitic worm product ES-62 up-regulates IL-22 production by $\hat{I}^{\hat{J}}$ T cells in the murine model of Collagen-Induced Arthritis. Inflammation and Cell Signaling, 2014, 1, .	1.6	3
25	Protection against collagenâ€induced arthritis in mice afforded by the parasitic worm product, <scp>ES</scp> â€62, is associated with restoration of the levels of interleukinâ€10â€producing <scp>B</scp> cells and reduced plasma cell infiltration of the joints. Immunology, 2014, 141, 457-466.	4.4	44
26	ES-62, a therapeutic anti-inflammatory agent evolved by the filarial nematode Acanthocheilonema viteae. Molecular and Biochemical Parasitology, 2014, 194, 1-8.	1.1	75
27	ESâ€62 Protects Against Collagenâ€Induced Arthritis by Resetting Interleukinâ€22 Toward Resolution of Inflammation in the Joints. Arthritis and Rheumatology, 2014, 66, 1492-1503.	5.6	50
28	Small molecule analogues of the immunomodulatory parasitic helminth product ES-62 have anti-allergy properties. International Journal for Parasitology, 2014, 44, 669-674.	3.1	36
29	Mitogen-Activated Protein Kinases as Therapeutic Targets for Rheumatoid Arthritis. Drugs, 2013, 73, 101-115.	10.9	52
30	The helminth product, ES-62, protects against airway inflammation by resetting the Th cell phenotype. International Journal for Parasitology, 2013, 43, 211-223.	3.1	57
31	Designing Anti-inflammatory Drugs from Parasitic Worms: A Synthetic Small Molecule Analogue of the <i>Acanthocheilonema viteae</i> Product ES-62 Prevents Development of Collagen-Induced Arthritis. Journal of Medicinal Chemistry, 2013, 56, 9982-10002.	6.4	79
32	Mast Cell Subsets and Their Functional Modulation by theAcanthocheilonema viteaeProduct ES-62. Journal of Parasitology Research, 2013, 2013, 1-13.	1.2	18
33	Receptor usage by the Acanthocheilonema viteae-derived immunomodulator, ES-62. Experimental Parasitology, 2012, 132, 97-102.	1.2	14
34	Immune complex-mediated co-ligation of the BCR with Fc ^{î3} RIIB results in homeostatic apoptosis of B cells involving Fas signalling that is defective in the MRL/Lpr model of systemic lupus erythematosus. Journal of Autoimmunity, 2012, 39, 332-346.	6.5	7
35	The parasitic helminth product ESâ€62 suppresses pathogenesis in collagenâ€induced arthritis by targeting the interleukinâ€17–producing cellular network at multiple sites. Arthritis and Rheumatism, 2012, 64, 3168-3178.	6.7	88
36	Helminth-derived immunomodulators: can understanding the worm produce the pill?. Nature Reviews Immunology, 2010, 10, 278-284.	22.7	166

Margaret M Harnett

#	Article	IF	CITATIONS
37	Effect of activated antigen-specific B cells on ES-62-mediated modulation of effector function of heterologous antigen-specific T cells in vivo. Immunology, 2008, 123, 411-425.	4.4	11
38	Inverse Rap1 and Phospho-ERK Expression Discriminate the Maintenance Phase of Tolerance and Priming of Antigen-Specific CD4+ T Cells In Vitro and In Vivo. Journal of Immunology, 2007, 179, 8026-8034.	0.8	15
39	Inhibition of FcεRI-mediated mast cell responses by ES-62, a product of parasitic filarial nematodes. Nature Medicine, 2007, 13, 1375-1381.	30.7	193
40	Laser scanning cytometry: understanding the immune system in situ. Nature Reviews Immunology, 2007, 7, 897-904.	22.7	95
41	IMMUNOLOGY: B Cells Spread and Gather. Science, 2006, 312, 709-710.	12.6	5
42	Differential signalling during B-cell maturation. Immunology Letters, 2005, 98, 33-44.	2.5	36
43	ES-62, an Immunomodulator Secreted by Filarial Nematodes, Suppresses Clonal Expansion and Modifies Effector Function of Heterologous Antigen-Specific T Cells In Vivo. Journal of Immunology, 2005, 175, 5817-5826.	0.8	55
44	Immunomodulation via Novel Use of TLR4 by the Filarial Nematode Phosphorylcholine-Containing Secreted Product, ES-62. Journal of Immunology, 2005, 174, 284-293.	0.8	223
45	In vivo exposure of murine dendritic cell and macrophage bone marrow progenitors to the phosphorylcholine-containing filarial nematode glycoprotein ES-62 polarizes their differentiation to an anti-inflammatory phenotype. Immunology, 2004, 113, 491-498.	4.4	63
46	FcγRIIb-mediated negative regulation of BCR signalling is associated with the recruitment of the MAPkinase-phosphatase, Pac-1, and the 3′-inositol phosphatase, PTEN. Cellular Signalling, 2004, 16, 71-80.	3.6	18
47	Bcl-xL antagonism of BCR-coupled mitochondrial phospholipase A2 signaling correlates with protection from apoptosis in WEHI-231 B cells. Blood, 2004, 103, 168-176.	1.4	19
48	CD40: A Growing Cytoplasmic Tale. Science Signaling, 2004, 2004, pe25-pe25.	3.6	32
49	Hyporesponsiveness of murine B lymphocytes exposed to the filarial nematode secreted product ES-62 in vivo. Immunology, 2003, 109, 238-245.	4.4	52
50	Differential regulation of interleukin-12 p40 and p35 induction via Erk mitogen-activated protein kinase-dependent and -independent mechanisms and the implications for bioactive IL-12 and IL-23 responses. Immunology, 2003, 109, 415-425.	4.4	111
51	A Novel Therapeutic Approach Targeting Articular Inflammation Using the Filarial Nematode-Derived Phosphorylcholine-Containing Glycoprotein ES-62. Journal of Immunology, 2003, 171, 2127-2133.	0.8	196
52	Differential Roles for Extracellularly Regulated Kinase-Mitogen-Activated Protein Kinase in B Cell Antigen Receptor-Induced Apoptosis and CD40-Mediated Rescue of WEHI-231 Immature B Cells. Journal of Immunology, 2002, 168, 3855-3864.	0.8	40
53	B Cell Receptor-Stimulated Mitochondrial Phospholipase A2 Activation and Resultant Disruption of Mitochondrial Membrane Potential Correlate with the Induction of Apoptosis in WEHI-231 B Cells. Journal of Immunology, 2001, 166, 137-147.	0.8	55
54	Differential recruitment of accessory molecules by FcÎ ³ RI during monocyte differentiation. European Journal of Immunology, 2001, 31, 2718-2725.	2.9	12

#	Article	IF	CITATIONS
55	A Filarial Nematode-Secreted Product Signals Dendritic Cells to Acquire a Phenotype That Drives Development of Th2 Cells. Journal of Immunology, 2000, 164, 6453-6460.	0.8	325
56	Presence of Phosphorylcholine on a Filarial Nematode Protein Influences Immunoglobulin G Subclass Response to the Molecule by an Interleukin-10-Dependent Mechanism. Infection and Immunity, 2000, 68, 5466-5468.	2.2	56
57	Immunomodulatory properties of a phosphorylcholine-containing secreted filarial glycoprotein. Parasite Immunology, 1999, 21, 601-608.	1.5	79
58	Endocytosis and vesicular trafficking of immune complexes and activation of phospholipase D by the human high-affinity IgG receptor requires distinct phosphoinositide 3-kinase activities. Biochemical Journal, 1999, 344, 605-611.	3.7	17
59	FcÎ ³ RI DIFFERENTIALLY ACTIVATES SEVERAL PKC ISOFORMS AND DIFFERENT PHOSPHOLIPASES DEPENDING ON MONOCYTE DIFFERENTIATION. Biochemical Society Transactions, 1999, 27, A101-A101.	3.4	0
60	Induction of signalling anergy via the T-cell receptor in cultured Jurkat T cells by pre-exposure to a filarial nematode secreted product. Parasite Immunology, 1998, 20, 551-563.	1.5	67
61	Characterization of heterotrimeric G-proteins in adult Acanthocheilonema viteae. Biochemical Journal, 1996, 320, 459-466.	3.7	3