
## Ju Young Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3542856/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Graphene Oxide Liquid Crystals. Angewandte Chemie - International Edition, 2011, 50, 3043-3047.                                                                     | 13.8 | 534       |
| 2  | 25th Anniversary Article: Chemically Modified/Doped Carbon Nanotubes & Graphene for Optimized<br>Nanostructures & Nanodevices. Advanced Materials, 2014, 26, 40-67. | 21.0 | 479       |
| 3  | Workfunction-Tunable, N-Doped Reduced Graphene Transparent Electrodes for High-Performance<br>Polymer Light-Emitting Diodes. ACS Nano, 2012, 6, 159-167.            | 14.6 | 297       |
| 4  | Directed self-assembly of block copolymers for next generation nanolithography. Materials Today, 2013, 16, 468-476.                                                 | 14.2 | 260       |
| 5  | Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission. Journal of<br>Materials Chemistry, 2011, 21, 3432-3437.                        | 6.7  | 227       |
| 6  | Graphene Oxide Liquid Crystals: Discovery, Evolution and Applications. Advanced Materials, 2016, 28, 3045-3068.                                                     | 21.0 | 211       |
| 7  | Musselâ€Inspired Block Copolymer Lithography for Low Surface Energy Materials of Teflon, Graphene, and Gold. Advanced Materials, 2011, 23, 5618-5622.               | 21.0 | 188       |
| 8  | High-performance nanopattern triboelectric generator by block copolymer lithography. Nano Energy,<br>2015, 12, 331-338.                                             | 16.0 | 146       |
| 9  | Highly tunable refractive index visible-light metasurface from block copolymer self-assembly. Nature<br>Communications, 2016, 7, 12911.                             | 12.8 | 143       |
| 10 | Surface Energy Modification by Spin-Cast, Large-Area Graphene Film for Block Copolymer Lithography.<br>ACS Nano, 2010, 4, 5464-5470.                                | 14.6 | 132       |
| 11 | Au–Ag Core–Shell Nanoparticle Array by Block Copolymer Lithography for Synergistic Broadband<br>Plasmonic Properties. ACS Nano, 2015, 9, 5536-5543.                 | 14.6 | 130       |
| 12 | One-Dimensional Metal Nanowire Assembly via Block Copolymer Soft Graphoepitaxy. Nano Letters, 2010, 10, 3500-3505.                                                  | 9.1  | 102       |
| 13 | Laser Writing Block Copolymer Self-Assembly on Graphene Light-Absorbing Layer. ACS Nano, 2016, 10, 3435-3442.                                                       | 14.6 | 102       |
| 14 | Multicomponent Nanopatterns by Directed Block Copolymer Self-Assembly. ACS Nano, 2013, 7, 8899-8907.                                                                | 14.6 | 99        |
| 15 | Ultralarge-Area Block Copolymer Lithography Enabled by Disposable Photoresist Prepatterning. ACS<br>Nano, 2010, 4, 5181-5186.                                       | 14.6 | 97        |
| 16 | Flexible and Transferrable Selfâ€Assembled Nanopatterning on Chemically Modified Graphene. Advanced<br>Materials, 2013, 25, 1331-1335.                              | 21.0 | 88        |
| 17 | Flash Light Millisecond Selfâ€Assembly of High χ Block Copolymers for Waferâ€Scale Subâ€10 nm<br>Nanopatterning. Advanced Materials, 2017, 29, 1700595.             | 21.0 | 78        |
| 18 | Sub-Nanometer Level Size Tuning of a Monodisperse Nanoparticle Array Via Block Copolymer<br>Lithography. Advanced Functional Materials, 2011, 21, 250-254.          | 14.9 | 70        |

Ји Young Кім

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Electric fields line up graphene oxide. Nature Materials, 2014, 13, 325-326.                                                                                                         | 27.5 | 66        |
| 20 | Directed self-assembly of block copolymers for universal nanopatterning. Soft Matter, 2013, 9, 2780.                                                                                 | 2.7  | 62        |
| 21 | DNA Origami Nanopatterning on Chemically Modified Graphene. Angewandte Chemie - International<br>Edition, 2012, 51, 912-915.                                                         | 13.8 | 59        |
| 22 | Ultralarge Area Sub-10 nm Plasmonic Nanogap Array by Block Copolymer Self-Assembly for Reliable<br>High-Sensitivity SERS. ACS Applied Materials & Interfaces, 2018, 10, 44660-44667. | 8.0  | 59        |
| 23 | Monodisperse Pattern Nanoalloying for Synergistic Intermetallic Catalysis. Nano Letters, 2013, 13, 5720-5726.                                                                        | 9.1  | 58        |
| 24 | 3D Tailored Crumpling of Block opolymer Lithography on Chemically Modified Graphene. Advanced<br>Materials, 2016, 28, 1591-1596.                                                     | 21.0 | 58        |
| 25 | Atomic Layer Deposition Assisted Pattern Multiplication of Block Copolymer Lithography for 5 nm<br>Scale Nanopatterning. Advanced Functional Materials, 2014, 24, 4343-4348.         | 14.9 | 55        |
| 26 | Diffusion-Dependent Graphite Electrode for All-Solid-State Batteries with Extremely High Energy Density. ACS Energy Letters, 2020, 5, 2995-3004.                                     | 17.4 | 53        |
| 27 | Mechanically Guided Postâ€Assembly of 3D Electronic Systems. Advanced Functional Materials, 2018, 28, 1803149.                                                                       | 14.9 | 41        |
| 28 | Wrinkleâ€Directed Selfâ€Assembly of Block Copolymers for Aligning of Nanowire Arrays. Advanced<br>Materials, 2014, 26, 4665-4670.                                                    | 21.0 | 38        |
| 29 | Interfacial barrier free organic-inorganic hybrid electrolytes for solid state batteries. Energy Storage<br>Materials, 2021, 37, 306-314.                                            | 18.0 | 38        |
| 30 | Anomalous Rapid Defect Annihilation in Self-Assembled Nanopatterns by Defect Melting. Nano Letters, 2015, 15, 1190-1196.                                                             | 9.1  | 37        |
| 31 | Graphite–Silicon Diffusionâ€Dependent Electrode with Short Effective Diffusion Length for<br>Highâ€Performance Allâ€Solidâ€State Batteries. Advanced Energy Materials, 2022, 12, .   | 19.5 | 34        |
| 32 | Metal Nanoparticle Array as a Tunable Refractive Index Material over Broad Visible and Infrared<br>Wavelengths. ACS Photonics, 2018, 5, 1188-1195.                                   | 6.6  | 32        |
| 33 | Electric field directed self-assembly of block copolymers for rapid formation of large-area complex nanopatterns. Molecular Systems Design and Engineering, 2017, 2, 560-566.        | 3.4  | 29        |
| 34 | Revisiting TiS2 as a diffusion-dependent cathode with promising energy density for all-solid-state lithium secondary batteries. Energy Storage Materials, 2021, 41, 289-296.         | 18.0 | 28        |
| 35 | Effect of the dielectric constant of a liquid electrolyte on lithium metal anodes. Electrochimica Acta, 2019, 300, 299-305.                                                          | 5.2  | 27        |
| 36 | Complex Highâ€Aspectâ€Ratio Metal Nanostructures by Secondary Sputtering Combined with Block<br>Copolymer Selfâ€Assembly. Advanced Materials, 2016, 28, 8439-8445.                   | 21.0 | 26        |

Ju Young Kim

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Mesoporous perforated Co 3 O 4 nanoparticles with a thin carbon layer for high performance Li-ion battery anodes. Electrochimica Acta, 2018, 264, 376-385.                                                                      | 5.2  | 26        |
| 38 | Electrode design methodology for all-solid-state batteries: 3D structural analysis and performance prediction. Energy Storage Materials, 2019, 19, 124-129.                                                                     | 18.0 | 26        |
| 39 | Graphene Oxide Induced Surface Modification for Functional Separators in Lithium Secondary<br>Batteries. Scientific Reports, 2019, 9, 2464.                                                                                     | 3.3  | 23        |
| 40 | Effects of vinylene carbonate and 1,3-propane sultone on high-rate cycle performance and surface properties of high-nickel layered oxide cathodes. Materials Research Bulletin, 2020, 132, 111008.                              | 5.2  | 19        |
| 41 | Nanodomain Swelling Block Copolymer Lithography for Morphology Tunable Metal Nanopatterning.<br>Small, 2014, 10, 3742-3749.                                                                                                     | 10.0 | 18        |
| 42 | Bimodal phase separated block copolymer/homopolymer blends self-assembly for hierarchical porous metal nanomesh electrodes. Nanoscale, 2018, 10, 100-108.                                                                       | 5.6  | 17        |
| 43 | Dimension-controlled solid oxide electrolytes for all-solid-state electrodes: Percolation pathways, specific contact area, and effective ionic conductivity. Chemical Engineering Journal, 2020, 391, 123528.                   | 12.7 | 17        |
| 44 | All-solid-state hybrid electrode configuration for high-performance all-solid-state batteries:<br>Comparative study with composite electrode and diffusion-dependent electrode. Journal of Power<br>Sources, 2022, 518, 230736. | 7.8  | 17        |
| 45 | Hierarchical Directed Selfâ€Assembly of Diblock Copolymers for Modified Pattern Symmetry. Advanced<br>Functional Materials, 2016, 26, 6462-6470.                                                                                | 14.9 | 16        |
| 46 | Insights into Lithium Surface: Stable Cycling by Controlled 10 μm Deep Surface Relief, Reinterpreting<br>the Natural Surface Defect on Lithium Metal Anode. ACS Applied Energy Materials, 2019, 2, 5656-5664.                   | 5.1  | 16        |
| 47 | Reversible thixotropic gel electrolytes for safer and shape-versatile lithium-ion batteries. Journal of<br>Power Sources, 2018, 401, 126-134.                                                                                   | 7.8  | 15        |
| 48 | Efficient cell design and fabrication of concentrationâ€gradient composite electrodes for highâ€power<br>and highâ€energyâ€density allâ€solidâ€state batteries. ETRI Journal, 2020, 42, 129-137.                                | 2.0  | 14        |
| 49 | High-rate cycling performance and surface analysis of LiNi1-Co/2Mn/2O2 (x=2/3, 0.4, 0.2) cathode<br>materials. Materials Chemistry and Physics, 2019, 222, 1-10.                                                                | 4.0  | 12        |
| 50 | Submicron interlayer for stabilizing thin Li metal powder electrode. Chemical Engineering Journal, 2021, 406, 126834.                                                                                                           | 12.7 | 12        |
| 51 | Electrolyte-free graphite electrode with enhanced interfacial conduction using Li+-conductive binder for high-performance all-solid-state batteries. Energy Storage Materials, 2022, 49, 481-492.                               | 18.0 | 10        |
| 52 | Single-step self-assembly of multilayer graphene based dielectric nanostructures. FlatChem, 2017, 4,<br>61-67.                                                                                                                  | 5.6  | 8         |
| 53 | Self-Assembled Nano–Lotus Pod Metasurface for Light Trapping. ACS Photonics, 2021, 8, 1616-1622.                                                                                                                                | 6.6  | 8         |
| 54 | Carbon: 25th Anniversary Article: Chemically Modified/Doped Carbon Nanotubes & Graphene for<br>Optimized Nanostructures & Nanodevices (Adv. Mater. 1/2014). Advanced Materials, 2014, 26, 2-2.                                  | 21.0 | 7         |

Ји Young Кім

| #  | Article                                                                                                                                                                                                                   | IF                      | CITATIONS     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------|
| 55 | Negativeâ€Tone Block Copolymer Lithography by In Situ Surface Chemical Modification. Small, 2014, 10,<br>4207-4212.                                                                                                       | 10.0                    | 6             |
| 56 | The controlled release of active substance from one-dimensional inorganic nanocarrier for the stability enhancement of lithium batteries. Chemical Engineering Journal, 2022, 427, 131748.                                | 12.7                    | 6             |
| 57 | Restacked nanohybrid graphene layers with expanded interlayer distance enabled by inorganic spacer<br>for highly efficient, flexible Na-ion battery anodes. Journal of Electroanalytical Chemistry, 2021, 886,<br>115137. | 3.8                     | 4             |
| 58 | 2D argyrodite LPSCl solid electrolyte for all-solid-state Li-ion battery using reduced graphene oxide template. Materials Today Energy, 2022, 23, 100913.                                                                 | 4.7                     | 4             |
| 59 | Liquid Crystals: Graphene Oxide Liquid Crystals: Discovery, Evolution and Applications (Adv. Mater.) Tj ETQq1 1 0.                                                                                                        | 784314 rg<br>21.0       | gBJT /Overloc |
| 60 | Directed highâ€i‡ block copolymer <scp>selfâ€assembly</scp> by laser writing on silicon substrate. Journal of Applied Polymer Science, 2022, 139, .                                                                       | 2.6                     | 3             |
| 61 | Surface Nanopatterning: Mussel-Inspired Block Copolymer Lithography for Low Surface Energy<br>Materials of Teflon, Graphene, and Gold (Adv. Mater. 47/2011). Advanced Materials, 2011, 23, 5584-5584.                     | 21.0                    | 2             |
| 62 | Electronic Stuctures: Mechanically Guided Postâ€Assembly of 3D Electronic Systems (Adv. Funct. Mater.) Tj ETQq                                                                                                            | 0.0.0 rgB1<br>14.9 rgB1 | [Overlock ]   |
| 63 | Methodology for Verifying the load limit point and bottle-neck of a game server using the large scale virtual clients. International Conference on Advanced Communication Technology, 2008, , .                           | 0.0                     | 1             |
| 64 | Collapse-Induced Multimer Formation of Self-Assembled Nanoparticles for Surface Enhanced Raman<br>Scattering. Coatings, 2021, 11, 76.                                                                                     | 2.6                     | 1             |
| 65 | Soft materials nanoengineering by directed molecular assembly. , 2010, , .                                                                                                                                                |                         | 0             |
| 66 | Ultralarge-area block copolymer lithography using self-assembly assisted photoresist pre-pattern. ,<br>2011, , .                                                                                                          |                         | 0             |
| 67 | Self-Assembly Nanofabrication via Mussel-Inspired Interfacial Engineering. Applied Mechanics and Materials, 0, 229-231, 2749-2752.                                                                                        | 0.2                     | 0             |
|    |                                                                                                                                                                                                                           |                         |               |

68

Back Cover: DNA Origami Nanopatterning on Chemically Modified Graphene (Angew. Chem. Int. Ed.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf