Giovanni Salassa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3542826/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combined spectroscopic studies on post-functionalized Au ₂₅ cluster as an ATR-FTIR sensor for cations. Chemical Science, 2021, 12, 7419-7427.	7.4	5
2	Unconventional Approaches in Coordination Chemistry and Organometallic Reactivity. ACS Omega, 2021, 6, 7240-7247.	3.5	8
3	Role of Intercluster and Interligand Dynamics of [Ag ₂₅ (DMBT) ₁₈] ^{â^} Nanoclusters by Multinuclear Magnetic Resonance Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 2524-2530.	3.1	9
4	Ligand and support effects on the reactivity and stability of Au38(SR)24 catalysts in oxidation reactions. Catalysis Communications, 2019, 130, 105768.	3.3	13
5	Metal Complexes of Oxadiazole Ligands: An Overview. International Journal of Molecular Sciences, 2019, 20, 3483.	4.1	27
6	The Zn(II)-1,4,7-Trimethyl-1,4,7-Triazacyclononane Complex: A Monometallic Catalyst Active in Two Protonation States. Frontiers in Chemistry, 2019, 7, 469.	3.6	7
7	Dynamic Origin of Chirality Transfer between Chiral Surface and Achiral Ligand in Au ₃₈ Clusters. ACS Nano, 2019, 13, 7127-7134.	14.6	13
8	On the mechanism of rapid metal exchange between thiolate-protected gold and gold/silver clusters: a time-resolved <i>in situ</i> XAFS study. Physical Chemistry Chemical Physics, 2018, 20, 5312-5318.	2.8	27
9	NMR spectroscopy: a potent tool for studying monolayer-protected metal nanoclusters. Nanoscale Horizons, 2018, 3, 457-463.	8.0	32
10	Ligand Migration from Cluster to Support: A Crucial Factor for Catalysis by Thiolateâ€protected Gold Clusters. ChemCatChem, 2018, 10, 5341-5341.	3.7	0
11	Ligand Migration from Cluster to Support: A Crucial Factor for Catalysis by Thiolateâ€protected Gold Clusters. ChemCatChem, 2018, 10, 5372-5376.	3.7	44
12	Covalently bonded multimers of Au ₂₅ (SBut) ₁₈ as a conjugated system. Nanoscale, 2018, 10, 12754-12762.	5.6	22
13	Structural Investigation of the Ligand Exchange Reaction with Rigid Dithiol on Doped (Pt, Pd) Au ₂₅ Clusters. Journal of Physical Chemistry C, 2017, 121, 10919-10926.	3.1	30
14	Dynamic Nature of Thiolate Monolayer in Au ₂₅ (SR) ₁₈ Nanoclusters. ACS Nano, 2017, 11, 12609-12614.	14.6	63
15	Silver migration between Au ₃₈ (SC ₂ H ₄ Ph) ₂₄ and doped Ag _x Au _{38â^x} (SC ₂ H ₄ Ph) ₂₄ nanoclusters. Chemical Communications, 2016, 52, 9205-9207.	4.1	57
16	Turning Supramolecular Receptors into Chemosensors by Nanoparticle-Assisted "NMR Chemosensing― Journal of the American Chemical Society, 2015, 137, 11399-11406.	13.7	30
17	Conformational Mobility in Monolayer-Protected Nanoparticles: From Torsional Free Energy Profiles to NMR Relaxation. Journal of Physical Chemistry C, 2015, 119, 20100-20110.	3.1	17
18	Spectroscopic properties of Zn(salphenazine) complexes and their application in small molecule organic solar cells. Dalton Transactions, 2014, 43, 210-221.	3.3	21

GIOVANNI SALASSA

#	Article	IF	CITATIONS
19	A DFT Study on the Mechanism of the Cycloaddition Reaction of CO ₂ to Epoxides Catalyzed by Zn(Salphen) Complexes. Chemistry - A European Journal, 2013, 19, 6289-6298.	3.3	271
20	Supramolecular bulky phosphines comprising 1,3,5-triaza-7-phosphaadamantane and Zn(salphen)s: structural features and application in hydrosilylation catalysis. Dalton Transactions, 2013, 42, 7595.	3.3	13
21	Merging catalysis and supramolecular aggregation features of triptycene based Zn(salphen)s. Dalton Transactions, 2013, 42, 7962.	3.3	22
22	Recent advances with Ï \in -conjugated salen systems. Chemical Society Reviews, 2012, 41, 622-631.	38.1	230
23	Versatile Switching in Substrate Topicity: Supramolecular Chirality Induction in Di―and Trinuclear Host Complexes. Chemistry - A European Journal, 2012, 18, 6805-6810.	3.3	26
24	Extremely Strong Self-Assembly of a Bimetallic Salen Complex Visualized at the Single-Molecule Level. Journal of the American Chemical Society, 2012, 134, 7186-7192.	13.7	80
25	Cooperative self-assembly of a macrocyclic Schiff base complex. Dalton Transactions, 2011, 40, 5236.	3.3	37
26	A Short Desymmetrization Protocol for the Coordination Environment in Bis-salphen Scaffolds. Journal of Organic Chemistry, 2011, 76, 5404-5412.	3.2	14
27	Effective Chirogenesis in a Bis(metallosalphen) Complex through Host–Guest Binding with Carboxylic Acids. Angewandte Chemie - International Edition, 2011, 50, 713-716.	13.8	108
28	Back Cover: Effective Chirogenesis in a Bis(metallosalphen) Complex through Host-Guest Binding with Carboxylic Acids (Angew. Chem. Int. Ed. 3/2011). Angewandte Chemie - International Edition, 2011, 50, 778-778.	13.8	2
29	Ligand-Selective Photodissociation from [Ru(bpy)(4AP)4]2+: a Spectroscopic and Computational Study. Inorganic Chemistry, 2009, 48, 1469-1481.	4.0	68
30	Structure of [Ru(bpy) _n (AP) _(6-2n)] ²⁺ homogeneous complexes: DFT calculation vs. EXAFS. Journal of Physics: Conference Series, 2009, 190, 012141.	0.4	8
31	Mechanism of Ligand Photodissociation in Photoactivable [Ru(bpy) ₂ L ₂] ²⁺ Complexes: A Density Functional Theory Study. Journal of the American Chemical Society, 2008, 130, 9590-9597	13.7	149