José I Ibeas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3542011/publications.pdf Version: 2024-02-01

		331670	434195
31	3,074 citations	21	31
papers	citations	h-index	g-index
32	32	32	3949
all docs	docs citations	times ranked	citing authors

LOSÃO LIBEAS

#	Article	IF	CITATIONS
1	Structural, Evolutionary, and Functional Analysis of the Protein O-Mannosyltransferase Family in Pathogenic Fungi. Journal of Fungi (Basel, Switzerland), 2021, 7, 328.	3.5	3
2	Ustilago maydis Secreted Endo-Xylanases Are Involved in Fungal Filamentation and Proliferation on and Inside Plants. Journal of Fungi (Basel, Switzerland), 2021, 7, 1081.	3.5	8
3	N-glycosylation of the protein disulfide isomerase Pdi1 ensures full Ustilago maydis virulence. PLoS Pathogens, 2019, 15, e1007687.	4.7	35
4	Chromatin modification factors in plant pathogenic fungi: Insights from Ustilago maydis. Fungal Genetics and Biology, 2019, 129, 52-64.	2.1	13
5	Population analysis of biofilm yeasts during fino sherry wine aging in the Montilla-Moriles D.O. region. International Journal of Food Microbiology, 2017, 244, 67-73.	4.7	20
6	The Hos2 Histone Deacetylase Controls Ustilago maydis Virulence through Direct Regulation of Mating-Type Genes. PLoS Pathogens, 2015, 11, e1005134.	4.7	37
7	Histone deacetylases: revealing the molecular base of dimorphism in pathogenic fungi. Microbial Cell, 2015, 2, 491-493.	3.2	7
8	Genes involved in protein glycosylation determine the activity and cell internalization of the antifungal peptide PAF26 in Saccharomyces cerevisiae. Fungal Genetics and Biology, 2013, 58-59, 105-115.	2.1	16
9	Endoplasmic Reticulum Glucosidases and Protein Quality Control Factors Cooperate to Establish Biotrophy in <i>Ustilago maydis</i> Â. Plant Cell, 2013, 25, 4676-4690.	6.6	27
10	Identification of O-mannosylated Virulence Factors in Ustilago maydis. PLoS Pathogens, 2012, 8, e1002563.	4.7	48
11	Chromatin Modulation at the FLO11 Promoter of <i>Saccharomyces cerevisiae</i> by HDAC and Swi/Snf Complexes. Genetics, 2012, 191, 791-803.	2.9	35
12	The General Transcriptional Repressor Tup1 Is Required for Dimorphism and Virulence in a Fungal Plant Pathogen. PLoS Pathogens, 2011, 7, e1002235.	4.7	52
13	The requirement for protein <i>O-mannosylation</i> for <i>Ustilago maydis</i> virulence seems to be linked to intrinsic aspects of the infection process rather than an altered plant response. Plant Signaling and Behavior, 2010, 5, 412-414.	2.4	7
14	Protein glycosylation in the phytopathogen Ustilago maydis: From core oligosaccharide synthesis to the ER glycoprotein quality control system, a genomic analysis. Fungal Genetics and Biology, 2010, 47, 727-735.	2.1	14
15	The <i>O</i> -Mannosyltransferase PMT4 Is Essential for Normal Appressorium Formation and Penetration in <i>Ustilago maydis</i> Â Â. Plant Cell, 2009, 21, 3397-3412.	6.6	60
16	ldentification of Novel Activation Mechanisms for <i>FLO11</i> Regulation in <i>Saccharomyces cerevisiae</i> . Genetics, 2008, 178, 145-156.	2.9	64
17	Molecular characterization of β-amyrin synthase from Aster sedifolius L. and triterpenoid saponin analysis. Plant Science, 2008, 175, 255-261.	3.6	32
18	Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature, 2006, 444, 97-101.	27.8	1,113

José I Ibeas

#	Article	IF	CITATIONS
19	Adaptive evolution by mutations in the FLO11 gene. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11228-11233.	7.1	197
20	Inorganic Cations Mediate Plant PR5 Protein Antifungal Activity through Fungal Mnn1- and Mnn4-Regulated Cell Surface Glycans. Molecular Plant-Microbe Interactions, 2004, 17, 780-788.	2.6	26
21	Overexpression of a cell wall glycoprotein in Fusarium oxysporum increases virulence and resistance to a plant PR-5 protein. Plant Journal, 2003, 36, 390-400.	5.7	41
22	In Defense against Pathogens. Both Plant Sentinels and Foot Soldiers Need to Know the Enemy,. Plant Physiology, 2003, 131, 1580-1590.	4.8	122
23	Salt causes ion disequilibriumâ€induced programmed cell death in yeast and plants. Plant Journal, 2002, 29, 649-659.	5.7	261
24	Does proline accumulation play an active role in stress-induced growth reduction?. Plant Journal, 2002, 31, 699-712.	5.7	357
25	A Plant Defense Response Effector Induces Microbial Apoptosis. Molecular Cell, 2001, 8, 921-930.	9.7	151
26	Resistance to the plant PR-5 protein osmotin in the model fungus Saccharomyces cerevisiae is mediated by the regulatory effects of SSD1 on cell wall composition. Plant Journal, 2001, 25, 271-280.	5.7	53
27	An In-Gel Assay of a Recombinant Western Corn Rootworm (Diabrotica virgifera virgifera) Cysteine Proteinase Expressed in Yeast. Analytical Biochemistry, 2000, 282, 153-155.	2.4	5
28	Fungal cell wall phosphomannans facilitate the toxic activity of a plant PR-5 protein. Plant Journal, 2000, 23, 375-383.	5.7	89
29	Osmotin, a Plant Antifungal Protein, Subverts Signal Transduction to Enhance Fungal Cell Susceptibility. Molecular Cell, 1998, 1, 807-817.	9.7	120
30	Genomic complexity and chromosomal rearrangements in wine-laboratory yeast hybrids. Current Genetics, 1996, 30, 410-416.	1.7	43
31	Electrophoretic Karyotype of budding yeasts with intact cell Wall. Nucleic Acids Research, 1993, 21, 3902-3902.	14.5	13