
Gian Cesare Tron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3541869/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Click chemistry reactions in medicinal chemistry: Applications of the 1,3â€dipolar cycloaddition between azides and alkynes. Medicinal Research Reviews, 2008, 28, 278-308.	10.5	885
2	Medicinal Chemistry of Combretastatin A4:Â Present and Future Directions. Journal of Medicinal Chemistry, 2006, 49, 3033-3044.	6.4	588
3	To each his own: isonitriles for all flavors. Functionalized isocyanides as valuable tools in organic synthesis. Chemical Society Reviews, 2017, 46, 1295-1357.	38.1	327
4	Visible light photocatalysis in the late-stage functionalization of pharmaceutically relevant compounds. Chemical Society Reviews, 2021, 50, 766-897.	38.1	227
5	Rapid Synthesis of Triazole-Modified Resveratrol Analogues via Click Chemistry. Journal of Medicinal Chemistry, 2006, 49, 467-470.	6.4	194
6	One-Pot Synthesis of Macrocycles by a Tandem Three-Component Reaction and Intramolecular [3+2] Cycloaddition. Organic Letters, 2006, 8, 4145-4148.	4.6	134
7	Medicinal Chemistry of Nicotinamide Phosphoribosyltransferase (NAMPT) Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 6279-6296.	6.4	121
8	Are 1,4―and 1,5â€Disubstituted 1,2,3â€Triazoles Good Pharmacophoric Groups?. ChemMedChem, 2014, 9, 2497-2508.	3.2	118
9	Synthesis and Cytotoxic Evaluation of Combretafurazans. Journal of Medicinal Chemistry, 2005, 48, 3260-3268.	6.4	108
10	In Vitro Metabolism Study of Combretastatin A-4 in Rat and Human Liver Microsomes. Drug Metabolism and Disposition, 2007, 35, 2252-2261.	3.3	96
11	Recent Advances in NAMPT Inhibitors: A Novel Immunotherapic Strategy. Frontiers in Pharmacology, 2020, 11, 656.	3.5	94
12	Chemoselective Esterification of Phenolic Acids and Alcohols. Organic Letters, 2002, 4, 3839-3841.	4.6	91
13	A Novel Potent Nicotinamide Phosphoribosyltransferase Inhibitor Synthesized via Click Chemistry. Journal of Medicinal Chemistry, 2010, 53, 616-623.	6.4	90
14	Computer-aided identification, design and synthesis of a novel series of compounds with selective antiviral activity against chikungunya virus. Antiviral Research, 2013, 98, 12-18.	4.1	87
15	Regioselective Suzuki Coupling of Dihaloheteroaromatic Compounds as a Rapid Strategy To Synthesize Potent Rigid Combretastatin Analogues. Journal of Medicinal Chemistry, 2011, 54, 4977-4986.	6.4	86
16	Inhalation of the prodrug PI3K inhibitor CL27c improves lung function in asthma and fibrosis. Nature Communications, 2018, 9, 5232.	12.8	86
17	Macrocyclic Diterpenoids fromEuphorbiasemiperfoliata. Journal of Natural Products, 1998, 61, 749-756.	3.0	85
18	Efficient Synthesis of α-Ketoamides via 2-Acyl-5-aminooxazoles by Reacting Acyl Chlorides and α-Isocyanoacetamides. Organic Letters, 2010, 12, 820-823.	4.6	78

#	Article	IF	CITATIONS
19	An Expeditious Procedure for the Isolation of Ingenol from the Seeds of Euphorbia lathyris. Journal of Natural Products, 1999, 62, 76-79.	3.0	75
20	A Mimicry of Primary Amines by Bis-Secondary Diamines as Components in the Ugi Four-Component Reaction. Angewandte Chemie - International Edition, 2006, 45, 1099-1102.	13.8	74
21	Ammonium Chloride Promoted Three-Component Synthesis of 5-Iminooxazoline and Its Subsequent Transformation to Macrocyclodepsipeptide. Organic Letters, 2007, 9, 5275-5278.	4.6	74
22	Replacement of the lactone moiety on podophyllotoxin and steganacin analogues with a 1,5-disubstituted 1,2,3-triazole via ruthenium-catalyzed click chemistry. Bioorganic and Medicinal Chemistry, 2007, 15, 6748-6757.	3.0	74
23	Medicinal Chemistry of Isocyanides. Chemical Reviews, 2021, 121, 10742-10788.	47.7	71
24	Diterpenoids from Euphorbia pithyusa subsp. cupanii. Journal of Natural Products, 1999, 62, 1399-1404.	3.0	64
25	Pietro Biginelli: The Man Behind the Reaction. European Journal of Organic Chemistry, 2011, 2011, 5541-5550.	2.4	62
26	Nicotinamide Phosphoribosyltransferase Acts as a Metabolic Gate for Mobilization of Myeloid-Derived Suppressor Cells. Cancer Research, 2019, 79, 1938-1951.	0.9	58
27	Unnatural Natural Products from the Transannular Cyclization of Lathyrane Diterpenes. Organic Letters, 2001, 3, 1609-1612.	4.6	53
28	A Concise Entry into Nonsymmetrical Alkyl Polyamines. Organic Letters, 2008, 10, 4199-4202.	4.6	51
29	Off the Beaten Track: The Use of Secondary Amines in the Ugi Reaction. European Journal of Organic Chemistry, 2013, 2013, 1849-1859.	2.4	50
30	Identification of Novel Triazole-Based Nicotinamide Phosphoribosyltransferase (NAMPT) Inhibitors Endowed with Antiproliferative and Antiinflammatory Activity. Journal of Medicinal Chemistry, 2017, 60, 1768-1792.	6.4	49
31	Synthesis and Cytotoxic Evaluation of Combretafurans, Potential Scaffolds for Dual-Action Antitumoral Agents. Journal of Medicinal Chemistry, 2006, 49, 5372-5376.	6.4	47
32	Solution-Phase Parallel Synthesis and Biological Evaluation of Combretatriazoles. ACS Combinatorial Science, 2008, 10, 732-740.	3.3	47
33	Polycyclic diterpenoids from Euphorbia characias. Fìtoterapìâ, 2000, 71, 134-142.	2.2	46
34	NO-Donor Phenols:  A New Class of Products Endowed with Antioxidant and Vasodilator Properties. Journal of Medicinal Chemistry, 2006, 49, 2886-2897.	6.4	46
35	Replacement of the double bond of antitubulin chalcones with triazoles and tetrazoles: Synthesis and biological evaluation. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 764-768.	2.2	45
36	Reciprocal Potentiation of the Antitumoral Activities of FK866, an Inhibitor of Nicotinamide Phosphoribosyltransferase, and Etoposide or Cisplatin in Neuroblastoma Cells. Journal of Pharmacology and Experimental Therapeutics, 2011, 338, 829-840.	2.5	41

#	Article	IF	CITATIONS
37	Ingenol esters induce apoptosis in Jurkat cells through an AP-1 and NF-κB independent pathway. Chemistry and Biology, 2001, 8, 767-778.	6.0	39
38	ldentification of a sirtuin 3 inhibitor that displays selectivity over sirtuin 1 and 2. European Journal of Medicinal Chemistry, 2012, 55, 58-66.	5.5	39
39	Imides: forgotten players in the Ugi reaction. One-pot multicomponent synthesis of quinazolinones. Chemical Communications, 2011, 47, 6966.	4.1	35
40	Design, Synthesis, and Biological Evaluation of Combretabenzodiazepines: A Novel Class of Anti-Tubulin Agents. Journal of Medicinal Chemistry, 2015, 58, 1345-1357.	6.4	35
41	Synthesis, Biological Evaluation, and Molecular Docking of Ugi Products Containing a Zinc-Chelating Moiety as Novel Inhibitors of Histone Deacetylases. Journal of Medicinal Chemistry, 2009, 52, 2776-2785.	6.4	33
42	Synthesis of Modified Ingenol Esters. European Journal of Organic Chemistry, 1999, 1999, 3413-3420.	2.4	29
43	Synthesis, molecular docking and biological evaluation as HDAC inhibitors of cyclopeptide mimetics by a tandem three-component reaction and intramolecular [3+2] cycloaddition. Molecular Diversity, 2010, 14, 109-121.	3.9	28
44	Visible-Light Photoredox Catalysis in Water. Journal of Organic Chemistry, 2023, 88, 6284-6293.	3.2	27
45	Stereospecific Synthesis of <i>syn</i> -α-Oximinoamides by a Three-Component Reaction of Isocyanides, <i>syn</i> -Chlorooximes, and Carboxylic Acids. Organic Letters, 2011, 13, 3734-3737.	4.6	26
46	Development of a new class of potential antiatherosclerosis agents: NO-donor antioxidants. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5971-5974.	2.2	25
47	Exploiting the Acylating Nature of the Imide-Ugi Intermediate: A Straightforward Synthesis of Tetrahydro-1,4-benzodiazepin-2-ones. Journal of Organic Chemistry, 2011, 76, 10258-10262.	3.2	25
48	Identification of Novel Antitubulin Agents by Using a Virtual Screening Approach Based on a 7â€Point Pharmacophore Model of the Tubulin Colchi‣ite. Chemical Biology and Drug Design, 2011, 78, 913-922.	3.2	25
49	An Efficient Synthesis of Symmetric and Unsymmetric Bis-(β-aminoamides) via Ugi Multicomponent Reaction. Organic Letters, 2012, 14, 6044-6047.	4.6	25
50	Synthesis and biological activity of mustard derivatives of combretastatins. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3551-3554.	2.2	24
51	Interrupted Ugi and Passerini Reactions: An Underexplored Treasure Island. Synthesis, 2018, 50, 3549-3570.	2.3	24
52	Synthesis of NO-Donor Bisphosphonates and Their in-Vitro Action on Bone Resorption. Journal of Medicinal Chemistry, 2005, 48, 1322-1329.	6.4	22
53	Triazole-Modified Histone Deacetylase Inhibitors As a Rapid Route to Drug Discovery. ACS Combinatorial Science, 2008, 10, 624-627.	3.3	22
54	ZINClick: A Database of 16 Million Novel, Patentable, and Readily Synthesizable 1,4-Disubstituted Triazoles. Journal of Chemical Information and Modeling, 2014, 54, 396-406.	5.4	22

#	Article	IF	CITATIONS
55	Synthesis of Aminocarbonyl <i>N</i> -Acylhydrazones by a Three-Component Reaction of Isocyanides, Hydrazonoyl Chlorides, and Carboxylic Acids. Organic Letters, 2014, 16, 5332-5335.	4.6	22
56	Exploiting the Electrophilic and Nucleophilic Dual Role of Nitrile Imines: One-Pot, Three-Component Synthesis of Furo[2,3- <i>d</i>]pyridazin-4(5 <i>H</i>)-ones. Organic Letters, 2015, 17, 3964-3967.	4.6	22
57	Nitrile N-Oxides and Nitrile Imines as New Fuels for the Discovery of Novel Isocyanide-Based Multicomponent Reactions. Synthesis, 2016, 48, 2721-2731.	2.3	22
58	Click 1,2,3-triazoles in drug discovery and development: From the flask to the clinic?. Advances in Heterocyclic Chemistry, 2021, 134, 101-148.	1.7	22
59	Reaction between (Z)-Arylchlorooximes and α-Isocyanoacetamides: A Procedure for the Synthesis of Aryl-α-ketoamide Amides. Journal of Organic Chemistry, 2014, 79, 6006-6014.	3.2	21
60	Multicomponent Reaction of <i>Z</i> -Chlorooximes, Isocyanides, and Hydroxylamines as Hypernucleophilic Traps. A One-Pot Route to Aminodioximes and Their Transformation into 5-Amino-1,2,4-oxadiazoles by Mitsunobu–Beckmann Rearrangement. Journal of Organic Chemistry, 2015, 80, 9652-9661.	3.2	21
61	Identification of a Potent Phosphoinositide 3â€Kinase Pan Inhibitor Displaying a Strategic Carboxylic Acid Group and Development of Its Prodrugs. ChemMedChem, 2017, 12, 1542-1554.	3.2	20
62	Structure activity relationship studies on Amb639752: toward the identification of a common pharmacophoric structure for DGKα inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 96-108.	5.2	20
63	Photocatalytic Isocyanide-Based Multicomponent Domino Cascade toward the Stereoselective Formation of Iminofurans. Journal of Organic Chemistry, 2020, 85, 1981-1990.	3.2	20
64	Synthesis of Passeriniâ^'Ugi Hybrids by a Four-Component Reaction Using the Glycolaldehyde Dimer. Journal of Organic Chemistry, 2009, 74, 4890-4892.	3.2	19
65	The Nef Reaction of Isocyanides. Synthesis, 2014, 46, 829-841.	2.3	19
66	Identification of a novel DGKα inhibitor for XLP-1 therapy by virtualÂscreening. European Journal of Medicinal Chemistry, 2019, 164, 378-390.	5.5	19
67	A novel α-isocyanoacetamide-based three-component reaction for the synthesis of dialkyl 2-acyl-5-aminofuran-3,4-dicarboxylates. Organic and Biomolecular Chemistry, 2011, 9, 1627.	2.8	18
68	Groebke multicomponent reaction and subsequent nucleophilic aromatic substitution for a convenient synthesis of 3,8-diaminoimidazo[1,2-a]pyrazines as potential kinase inhibitors. Organic and Biomolecular Chemistry, 2011, 9, 4144.	2.8	15
69	lsocyanide-Mediated Multicomponent Synthesis of <i>C</i> -Oximinoamidines. Organic Letters, 2013, 15, 5902-5905.	4.6	15
70	Metabolic Fate of the Isocyanide Moiety: Are Isocyanides Pharmacophore Groups Neglected by Medicinal Chemists?. Chemical Research in Toxicology, 2020, 33, 955-966.	3.3	15
71	New Potential Uroselective NO-Donor α1-Antagonists. Journal of Medicinal Chemistry, 2003, 46, 3762-3765.	6.4	14
72	Amphoteric 2-(sulfonylamino)benzaldehydes, secondary amines and isocyanides in the multicomponent synthesis of elusive N -alkyl-2,3-diaminoindoles. Tetrahedron Letters, 2017, 58, 4264-4268.	1.4	14

#	Article	IF	CITATIONS
73	Identification of potent triazolylpyridine nicotinamide phosphoribosyltransferase (NAMPT) inhibitors bearing a 1,2,3-triazole tail group. European Journal of Medicinal Chemistry, 2019, 181, 111576.	5.5	14
74	Aryl Azides as Forgotten Electrophiles in the Van Leusen Reaction: A Multicomponent Transformation Affording 4-Tosyl-1-arylimidazoles. Journal of Organic Chemistry, 2019, 84, 16299-16307.	3.2	14
75	Visible-Light Photocatalytic Functionalization of Isocyanides for the Synthesis of Secondary Amides and Ketene Aminals. Journal of Organic Chemistry, 2020, 85, 14077-14086.	3.2	13
76	Photomicellar Catalyzed Synthesis of Amides from Isocyanides: Optimization, Scope, and NMR Studies of Photocatalyst/Surfactant Interactions. ACS Organic & Inorganic Au, 0, , .	4.0	12
77	What's in a Name? Drug Nomenclature and Medicinal Chemistry Trends using INN Publications. Journal of Medicinal Chemistry, 2021, 64, 4410-4429.	6.4	11
78	Design, synthesis, and biological evaluation of new (2E,6E)-10-(dimethylamino)-3,7-dimethyl-2,6-decadien-1-ol ethers as inhibitors of human and Trypanosoma cruzi oxidosqualene cyclase. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 220-224.	2.2	10
79	The 115 Years Old Multicomponent Bargellini Reaction: Perspectives and New Applications. Molecules, 2021, 26, 558.	3.8	10
80	The Dark Side of Isocyanides: Visible-Light Photocatalytic Activity in the Oxidative Functionalization of C(sp ³)–H Bonds. Journal of Organic Chemistry, 2021, 86, 18117-18127.	3.2	10
81	Solution-Phase Parallel Synthesis of Aryloxyimino Amides via a Novel Multicomponent Reaction among Aromatic (<i>Z</i>)-Chlorooximes, Isocyanides, and Electron-Deficient Phenols. ACS Combinatorial Science, 2014, 16, 602-605.	3.8	9
82	N–N bond formation in Ugi processes: from nitric acid to libraries of nitramines. Chemical Communications, 2017, 53, 2118-2121.	4.1	9
83	Synthesis of Heteroarylogous 1H-Indole-3-carboxamidines via a Three-Component Interrupted Ugi Reaction. Synthesis, 2015, 47, 489-496.	2.3	8
84	Tritylamine as an Ammonia Surrogate in the Ugi Reaction Provides Access to Unprecedented 5-Sulfamido Oxazoles Using Burgess-type Reagents. Organic Letters, 2021, 23, 3610-3614.	4.6	8
85	Recent Advances in the Synthesis of Polyamine Derivatives and Their Applications. Molecules, 2021, 26, 6579.	3.8	8
86	Visible-light photocatalytic metal-free multicomponent Ugi-like chemistry. Green Chemistry, 2022, 24, 3993-4003.	9.0	8
87	A Successful Replacement of Phenols with Isocyanides in the Bargellini Reaction: Synthesis of 3-Carboxamido-Isobutyric Acids. Journal of Organic Chemistry, 2016, 81, 11467-11471.	3.2	7
88	α-Amino Acids as Synthons in the Ugi-5-Centers-4-Components Reaction: Chemistry and Applications. Symmetry, 2019, 11, 798.	2.2	7
89	A fast route for the synthesis of tetrazolyl oximes by a novel multicomponent reaction between Z-chlorooximes, isocyanides and trimethylsilyl azide. Tetrahedron Letters, 2017, 58, 3549-3553.	1.4	6
90	On-water pyrrolidine-mediated domino synthesis of 2-iminoisatins. Green Chemistry, 2018, 20, 3912-3915.	9.0	6

#	Article	IF	CITATIONS
91	The Guareschi Pyridine Scaffold as a Valuable Platform for the Identification of Selective PI3K Inhibitors. Molecules, 2015, 20, 17275-17287.	3.8	5
92	The use of 2-hydroxymethyl benzoic acid as an effective water surrogate in the Passerini reaction: A straightforward access to 1±-hydroxyamides. Tetrahedron Letters, 2017, 58, 4786-4789.	1.4	5
93	Synthesis and Characterization of Bis-Triazolyl-Pyridine Derivatives as Noncanonical DNA-Interacting Compounds. International Journal of Molecular Sciences, 2021, 22, 11959.	4.1	5
94	Drug Discovery for Soft Drugs on TRPV1 and TRPM8 Channels Using the Passerini Reaction. Methods in Molecular Biology, 2019, 1987, 207-221.	0.9	4
95	Data on metabolic stability, aqueous solubility and CYP inhibition of novel triazole-based nicotinamide phosphoribosyltransferase (NAMPT) inhibitors. Data in Brief, 2020, 28, 105034.	1.0	4
96	Visible-Light Photocatalytic Ugi/Aza-Wittig Cascade towards 2-Aminomethyl-1,3,4-oxadiazole Derivatives. Synthesis, 2021, 53, 4419-4427.	2.3	4
97	Sequential multicomponent synthesis of α-ketoimides, from acyl chlorides, isocyanides, and silver salts of carboxylic acids. Tetrahedron Letters, 2014, 55, 7060-7063.	1.4	3
98	Exploiting the Nucleophilicity of the Nitrogen Atom of Imidazoles: One-Pot Three-Component Synthesis of Imidazo-Pyrazines. Molecules, 2019, 24, 1959.	3.8	3
99	A Three-Component Synthesis of (1,3-Oxazol-2-yl)-1,2-dihydro(iso)quinoline and its further Structural Diversifications. Synlett, 2005, 2005, 532-534.	1.8	1
100	Non-hydrolytic chemoselective cleavage of Ugi tertiary amides: A mild access to N-substituted α-amino acid amides. Tetrahedron Letters, 2018, 59, 1196-1199.	1.4	1
101	Icilio Guareschi and his amazing "1897 reaction― Beilstein Journal of Organic Chemistry, 2021, 17, 1335-1351.	2.2	1
102	Multicomponent reaction between (Z)-chloroximes, isocyanides and NH-heterocyclic rings. Tetrahedron Letters, 2021, 86, 153513.	1.4	1
103	Domino synthesis of 5-aminoimidazoles from Strecker multicomponent adducts via ytterbium-promoted isocyanide insertion/5-exo-dig cyclization. Molecular Diversity, 2022, , .	3.9	1