Shuli Niu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3541812/publications.pdf

Version: 2024-02-01

202 papers 13,345 citations

59 h-index 28224 105 g-index

216 all docs

216 docs citations

216 times ranked

11849 citing authors

#	Article	IF	CITATIONS
1	Quantifying global soil carbon losses in response to warming. Nature, 2016, 540, 104-108.	13.7	879
2	A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 2015, 10, 024019.	2.2	674
3	Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a metaâ€analysis. New Phytologist, 2012, 195, 172-181.	3.5	460
4	Waterâ€mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytologist, 2008, 177, 209-219.	3.5	392
5	Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a metaâ€analysis. Global Change Biology, 2016, 22, 934-943.	4.2	359
6	Air temperature optima of vegetation productivity across global biomes. Nature Ecology and Evolution, 2019, 3, 772-779.	3.4	316
7	A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology and Evolution, 2019, 3, 1309-1320.	3.4	304
8	Waterâ€use efficiency in response to climate change: from leaf to ecosystem in a temperate steppe. Global Change Biology, 2011, 17, 1073-1082.	4.2	271
9	A framework for benchmarking land models. Biogeosciences, 2012, 9, 3857-3874.	1.3	267
10	Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2788-2793.	3.3	265
11	Microbes drive global soil nitrogen mineralization and availability. Global Change Biology, 2019, 25, 1078-1088.	4.2	248
12	Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe. Global Change Biology, 2009, 15, 1544-1556.	4.2	228
13	Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration. Ecology, 2009, 90, 2700-2710.	1.5	213
14	Global patterns and substrateâ€based mechanisms of theÂterrestrial nitrogen cycle. Ecology Letters, 2016, 19, 697-709.	3.0	192
15	Nitrogen effects on net ecosystem carbon exchange in a temperate steppe. Global Change Biology, 2010, 16, 144-155.	4.2	183
16	Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling. Global Change Biology, 2010, 16, 1306-1316.	4.2	179
17	Coordinated approaches to quantify longâ€ŧerm ecosystem dynamics in response to global change. Global Change Biology, 2011, 17, 843-854.	4.2	165
18	Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Science China Life Sciences, 2022, 65, 861-895.	2.3	163

#	Article	lF	CITATIONS
19	Plant growth and mortality under climatic extremes: An overview. Environmental and Experimental Botany, 2014, 98, 13-19.	2.0	157
20	A synthesis of the effect of grazing exclusion on carbon dynamics in grasslands in China. Global Change Biology, 2016, 22, 1385-1393.	4.2	157
21	Costimulation of soil glycosidase activity and soil respiration by nitrogen addition. Global Change Biology, 2017, 23, 1328-1337.	4.2	154
22	A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization: latitudinal patterns and mechanisms. Global Change Biology, 2017, 23, 455-464.	4.2	151
23	Global patterns and controlling factors of soil nitrification rate. Global Change Biology, 2020, 26, 4147-4157.	4.2	149
24	Net primary productivity and rainâ€use efficiency as affected by warming, altered precipitation, and clipping in a mixedâ€grass prairie. Global Change Biology, 2013, 19, 2753-2764.	4.2	148
25	Ecosystem Traits Linking Functional Traits to Macroecology. Trends in Ecology and Evolution, 2019, 34, 200-210.	4.2	140
26	Differential responses of carbonâ€degrading enzyme activities to warming: Implications for soil respiration. Global Change Biology, 2018, 24, 4816-4826.	4.2	131
27	Non-Additive Effects of Water and Nitrogen Addition on Ecosystem Carbon Exchange in a Temperate Steppe. Ecosystems, 2009, 12, 915-926.	1.6	125
28	Water scaling of ecosystem carbon cycle feedback to climate warming. Science Advances, 2019, 5, eaav1131.	4.7	118
29	Global soil acidification impacts on belowground processes. Environmental Research Letters, 2019, 14, 074003.	2.2	118
30	Differential responses of ecosystem respiration components to experimental warming in a meadow grassland on the Tibetan Plateau. Agricultural and Forest Meteorology, 2016, 220, 21-29.	1.9	117
31	Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms. New Phytologist, 2012, 194, 775-783.	3.5	111
32	Global changes alter plant multiâ€element stoichiometric coupling. New Phytologist, 2019, 221, 807-817.	3.5	110
33	Plant Trait Networks: Improved Resolution of the Dimensionality of Adaptation. Trends in Ecology and Evolution, 2020, 35, 908-918.	4.2	107
34	Soil organic matter availability and climate drive latitudinal patterns in bacterial diversity from tropical to cold temperate forests. Functional Ecology, 2018, 32, 61-70.	1.7	106
35	Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China. Environmental and Experimental Botany, 2008, 63, 91-101.	2.0	105
36	Regional variation in the temperature sensitivity of soil organic matter decomposition in China's forests and grasslands. Global Change Biology, 2017, 23, 3393-3402.	4.2	101

#	Article	IF	Citations
37	Global soilâ€derived ammonia emissions from agricultural nitrogen fertilizer application: A refinement based on regional and cropâ€specific emission factors. Global Change Biology, 2021, 27, 855-867.	4.2	96
38	Post-anthesis changes in photosynthetic traits of maize hybrids released in different years. Field Crops Research, 2005, 93, 108-115.	2.3	94
39	Transient dynamics of terrestrial carbon storage: mathematical foundation and its applications. Biogeosciences, 2017, 14, 145-161.	1.3	91
40	Global evidence on nitrogen saturation of terrestrial ecosystem net primary productivity. Environmental Research Letters, 2016, 11, 024012.	2.2	88
41	Carbon storage in China's terrestrial ecosystems: A synthesis. Scientific Reports, 2018, 8, 2806.	1.6	86
42	Climatic role of terrestrial ecosystem under elevated <scp>CO</scp> ₂ : a bottomâ€up greenhouse gases budget. Ecology Letters, 2018, 21, 1108-1118.	3.0	81
43	Interannual variability in responses of belowground net primary productivity (<scp>NPP</scp>) and <scp>NPP</scp> partitioning to longâ€ŧerm warming and clipping in a tallgrass prairie. Global Change Biology, 2012, 18, 1648-1656.	4.2	79
44	Global meta-analysis on the responses of soil extracellular enzyme activities to warming. Science of the Total Environment, 2020, 705, 135992.	3.9	79
45	FLUXNET-CH ₄ : a global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands. Earth System Science Data, 2021, 13, 3607-3689.	3.7	79
46	Nonlinear responses of ecosystem carbon fluxes and waterâ€use efficiency to nitrogen addition in Inner Mongolia grassland. Functional Ecology, 2016, 30, 490-499.	1.7	75
47	Limits to growth of forest biomass carbon sink under climate change. Nature Communications, 2018, 9, 2709.	5.8	74
48	Ecosystem Carbon Fluxes in Response to Warming and Clipping in a Tallgrass Prairie. Ecosystems, 2013, 16, 948-961.	1.6	73
49	Nonlinear responses of land ecosystems to variation in precipitation. New Phytologist, 2017, 214, 5-7.	3.5	71
50	Soil acid cations induced reduction in soil respiration under nitrogen enrichment and soil acidification. Science of the Total Environment, 2018, 615, 1535-1546.	3.9	70
51	Light and Heavy Fractions of Soil Organic Matter in Response to Climate Warming and Increased Precipitation in a Temperate Steppe. PLoS ONE, 2012, 7, e33217.	1.1	70
52	Interannual variability of ecosystem carbon exchange: From observation to prediction. Global Ecology and Biogeography, 2017, 26, 1225-1237.	2.7	68
53	Soil and vegetation carbon turnover times from tropical to boreal forests. Functional Ecology, 2018, 32, 71-82.	1.7	68
54	The effect of warming on grassland evapotranspiration partitioning using laser-based isotope monitoring techniques. Geochimica Et Cosmochimica Acta, 2013, 111, 28-38.	1.6	67

#	Article	IF	Citations
55	Gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming. Nature Communications, 2020, 11, 4897.	5.8	67
56	The role of data assimilation in predictive ecology. Ecosphere, 2014, 5, 1-16.	1.0	65
57	Effects of warming and increased precipitation on net ecosystem productivity: A long-term manipulative experiment in a semiarid grassland. Agricultural and Forest Meteorology, 2017, 232, 359-366.	1.9	65
58	Climate controls over the net carbon uptake period and amplitude of net ecosystem production in temperate and boreal ecosystems. Agricultural and Forest Meteorology, 2017, 243, 9-18.	1.9	64
59	Response of Water Use Efficiency to Global Environmental Change Based on Output From Terrestrial Biosphere Models. Global Biogeochemical Cycles, 2017, 31, 1639-1655.	1.9	63
60	Seasonal hysteresis of net ecosystem exchange in response to temperature change: patterns and causes. Global Change Biology, 2011, 17, 3102-3114.	4.2	62
61	Precipitation regulates plant gas exchange and its long-term response to climate change in a temperate grassland. Journal of Plant Ecology, 2016, 9, 531-541.	1.2	62
62	Maximum carbon uptake rate dominates the interannual variability of global net ecosystem exchange. Global Change Biology, 2019, 25, 3381-3394.	4.2	62
63	Fineâ€root functional trait responses to experimental warming: a global metaâ€analysis. New Phytologist, 2021, 230, 1856-1867.	3 . 5	59
64	Nitrogen regulation of the climate–carbon feedback: evidence from a longâ€ŧerm global change experiment. Ecology, 2010, 91, 3261-3273.	1.5	58
65	Heavy grazing reduces grassland soil greenhouse gas fluxes: A global meta-analysis. Science of the Total Environment, 2019, 654, 1218-1224.	3.9	57
66	Covariation between gross primary production and ecosystem respiration across space and the underlying mechanisms: A global synthesis. Agricultural and Forest Meteorology, 2015, 203, 180-190.	1.9	56
67	Experimental warming and clipping altered litter carbon and nitrogen dynamics in a tallgrass prairie. Agriculture, Ecosystems and Environment, 2010, 138, 206-213.	2.5	55
68	Warming Effects on Ecosystem Carbon Fluxes Are Modulated by Plant Functional Types. Ecosystems, 2017, 20, 515-526.	1.6	54
69	Nitrogen addition reduces soil respiration but increases the relative contribution of heterotrophic component in an alpine meadow. Functional Ecology, 2019, 33, 2239-2253.	1.7	54
70	Plant functional groups regulate soil respiration responses to nitrogen addition and mowing over a decade. Functional Ecology, 2018, 32, 1117-1127.	1.7	52
71	Sizeâ€dependent nutrient limitation of tree growth from subtropical to cold temperate forests. Functional Ecology, 2018, 32, 95-105.	1.7	52
72	The Global-DEP conceptual framework â€" research on dryland ecosystems to promote sustainability. Current Opinion in Environmental Sustainability, 2021, 48, 17-28.	3.1	52

#	Article	lF	CITATIONS
73	Variations and controlling factors of soil denitrification rate. Global Change Biology, 2022, 28, 2133-2145.	4.2	52
74	Diversity of plant and soil microbes mediates the response of ecosystem multifunctionality to grazing disturbance. Science of the Total Environment, 2021, 776, 145730.	3.9	51
75	Light-intensity grazing improves alpine meadow productivity and adaption to climate change on the Tibetan Plateau. Scientific Reports, 2015, 5, 15949.	1.6	50
76	Environmental variables better explain changes in potential nitrification and denitrification activities than microbial properties in fertilized forest soils. Science of the Total Environment, 2019, 647, 653-662.	3.9	50
77	Vital roles of soil microbes in driving terrestrial nitrogen immobilization. Global Change Biology, 2021, 27, 1848-1858.	4.2	50
78	Effects of Grazing Regimes on Plant Traits and Soil Nutrients in an Alpine Steppe, Northern Tibetan Plateau. PLoS ONE, 2014, 9, e108821.	1.1	49
79	Soil carbon fractions in grasslands respond differently to various levels of nitrogen enrichments. Plant and Soil, 2014, 384, 401-412.	1.8	48
80	Biotic and climatic controls on interannual variability in carbon fluxes across terrestrial ecosystems. Agricultural and Forest Meteorology, 2015, 205, 11-22.	1.9	47
81	Vegetation type controls root turnover in global grasslands. Global Ecology and Biogeography, 2019, 28, 442-455.	2.7	46
82	When does extreme drought elicit extreme ecological responses?. Journal of Ecology, 2019, 107, 2553-2563.	1.9	45
83	Diversity-decomposition relationships in forests worldwide. ELife, 2020, 9, .	2.8	45
84	Transpiration Dominates Ecosystem Waterâ€Use Efficiency in Response to Warming in an Alpine Meadow. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 453-462.	1.3	44
85	Contrasting responses of phosphatase kinetic parameters to nitrogen and phosphorus additions in forest soils. Functional Ecology, 2018, 32, 106-116.	1.7	44
86	Nitrogen deposition differentially affects soil gross nitrogen transformations in organic and mineral horizons. Earth-Science Reviews, 2020, 201, 103033.	4.0	44
87	Soil enzymes in response to climate warming: Mechanisms and feedbacks. Functional Ecology, 2022, 36, 1378-1395.	1.7	44
88	Recovery time and state change of terrestrial carbon cycle after disturbance. Environmental Research Letters, 2017, 12, 104004.	2.2	43
89	Differential responses of ecosystem carbon flux components to experimental precipitation gradient in an alpine meadow. Functional Ecology, 2019, 33, 889-900.	1.7	43
90	Photosynthetic responses of C3 and C4 species to seasonal water variability and competition. Journal of Experimental Botany, 2005, 56, 2867-2876.	2.4	41

#	Article	IF	Citations
91	Unchanged carbon balance driven by equivalent responses of production and respiration to climate change in a mixedâ€grass prairie. Global Change Biology, 2016, 22, 1857-1866.	4.2	41
92	Plant Nitrogen Dynamics and Nitrogen-use Strategies under Altered Nitrogen Seasonality and Competition. Annals of Botany, 2007, 100, 821-830.	1.4	39
93	Different growth responses of C3 and C4 grasses to seasonal water and nitrogen regimes and competition in a pot experiment. Journal of Experimental Botany, 2008, 59, 1431-1439.	2.4	38
94	Soil gross N ammonification and nitrification from tropical to temperate forests in eastern China. Functional Ecology, 2018, 32, 83-94.	1.7	38
95	Vegetation Functional Properties Determine Uncertainty of Simulated Ecosystem Productivity: A Traceability Analysis in the East Asian Monsoon Region. Global Biogeochemical Cycles, 2019, 33, 668-689.	1.9	38
96	Long-term experimental warming decreased labile soil organic carbon in a tallgrass prairie. Plant and Soil, 2012, 361, 307-315.	1.8	36
97	Shifting Impacts of Climate Change. Advances in Ecological Research, 2016, 55, 437-473.	1.4	36
98	Photosynthesis, transpiration and water use efficiency of four plant species with grazing intensities in Hunshandak Sandland, China. Journal of Arid Environments, 2007, 70, 304-315.	1.2	35
99	What have we learned from global change manipulative experiments in China? A meta-analysis. Scientific Reports, 2015, 5, 12344.	1.6	35
100	Global variations and controlling factors of soil nitrogen turnover rate. Earth-Science Reviews, 2020, 207, 103250.	4.0	35
101	Long term trend and interannual variability of land carbon uptakeâ€"the attribution and processes. Environmental Research Letters, 2017, 12, 014018.	2.2	34
102	Research challenges and opportunities for using big data in global change biology. Global Change Biology, 2020, 26, 6040-6061.	4.2	33
103	Common Species Stability and Species Asynchrony Rather than Richness Determine Ecosystem Stability Under Nitrogen Enrichment. Ecosystems, 2021, 24, 686-698.	1.6	32
104	Biodiversity alleviates the decrease of grassland multifunctionality under grazing disturbance: A global metaâ€analysis. Global Ecology and Biogeography, 2022, 31, 155-167.	2.7	32
105	Divergent responses of primary production to increasing precipitation variability in global drylands. Global Change Biology, 2021, 27, 5225-5237.	4.2	31
106	Thermal adaptation of net ecosystem exchange. Biogeosciences, 2011, 8, 1453-1463.	1.3	30
107	Net primary productivity and its partitioning in response to precipitation gradient in an alpine meadow. Scientific Reports, 2017, 7, 15193.	1.6	29
108	Initial shifts in nitrogen impact on ecosystem carbon fluxes in an alpine meadow: patterns and causes. Biogeosciences, 2017, 14, 3947-3956.	1.3	29

#	Article	IF	CITATIONS
109	The surface-atmosphere exchange of carbon dioxide in tropical rainforests: Sensitivity to environmental drivers and flux measurement methodology. Agricultural and Forest Meteorology, 2018, 263, 292-307.	1.9	29
110	Different responses of soil organic carbon fractions to additions of nitrogen. European Journal of Soil Science, 2018, 69, 1098-1104.	1.8	29
111	Toward a sustainable grazing management based on biodiversity and ecosystem multifunctionality in drylands. Current Opinion in Environmental Sustainability, 2021, 48, 36-43.	3.1	29
112	Diurnal variation of gas exchange, chlorophyll fluorescence, and xanthophyll cycle components of maize hybrids released in different years. Photosynthetica, 2006, 44, 26-31.	0.9	28
113	Cropland abandonment enhances soil inorganic nitrogen retention and carbon stock in <scp>China</scp> : A metaâ€analysis. Land Degradation and Development, 2018, 29, 3898-3906.	1.8	28
114	Different strategies for regulating free-living N2 fixation in nutrient-amended subtropical and temperate forest soils. Applied Soil Ecology, 2019, 136, 21-29.	2.1	27
115	Global Soil Gross Nitrogen Transformation Under Increasing Nitrogen Deposition. Global Biogeochemical Cycles, 2021, 35, .	1.9	25
116	Gas Exchange, Photochemical Efficiency, and Leaf Water Potential in Three Salix Species. Photosynthetica, 2003, 41, 393-398.	0.9	24
117	Diurnal Gas Exchange and Superior Resources Use Efficiency of Typical C ₄ Species in Hunshandak Sandland, China. Photosynthetica, 2003, 41, 221-226.	0.9	22
118	Relationships Between Leaf Carbon and Macronutrients Across Woody Species and Forest Ecosystems Highlight How Carbon Is Allocated to Leaf Structural Function. Frontiers in Plant Science, 2021, 12, 674932.	1.7	22
119	An integrated belowground traitâ€based understanding of nitrogenâ€driven plant diversity loss. Global Change Biology, 2022, 28, 3651-3664.	4.2	22
120	Past climate conditions predict the influence of nitrogen enrichment on the temperature sensitivity of soil respiration. Communications Earth & Environment, 2021, 2, .	2.6	22
121	Direct and indirect effects of climatic variations on the interannual variability in net ecosystem exchange across terrestrial ecosystems. Tellus, Series B: Chemical and Physical Meteorology, 2022, 68, 30575.	0.8	21
122	Responses of soil enzymatic activities to transgenic Bacillus thuringiensis (Bt) crops - A global meta-analysis. Science of the Total Environment, 2019, 651, 1830-1838.	3.9	21
123	The stoichiometry of soil microbial biomass determines metabolic quotient of nitrogen mineralization. Environmental Research Letters, 2020, 15, 034005.	2.2	21
124	Discrepant responses between evapotranspiration- and transpiration-based ecosystem water use efficiency to interannual precipitation fluctuations. Agricultural and Forest Meteorology, 2021, 303, 108385.	1.9	21
125	Increased soil microbial AOB amoA and narG abundances sustain long-term positive responses of nitrification and denitrification to N deposition. Soil Biology and Biochemistry, 2022, 166, 108539.	4.2	21
126	Precipitation manipulation and terrestrial carbon cycling: The roles of treatment magnitude, experimental duration and local climate. Global Ecology and Biogeography, 2021, 30, 1909-1921.	2.7	20

#	Article	IF	Citations
127	Leaf osmotic potentials of 104 plant species in relation to habitats and plant functional types in Hunshandak Sandland, Inner Mongolia, China. Trees - Structure and Function, 2003, 17, 554-560.	0.9	19
128	Ecophysiological acclimation to different soil moistures in plants from a semi-arid sandland. Journal of Arid Environments, 2005, 63, 353-365.	1.2	19
129	Divergent responses of ecosystem respiration components to livestock exclusion on the Qinghai Tibetan Plateau. Land Degradation and Development, 2018, 29, 1726-1737.	1.8	19
130	Effects of warming and clipping on CH4 and N2O fluxes in an alpine meadow. Agricultural and Forest Meteorology, 2021, 297, 108278.	1.9	19
131	Forest soil acidification consistently reduces litter decomposition irrespective of nutrient availability and litter type. Functional Ecology, 2021, 35, 2753-2762.	1.7	19
132	Microaggregates regulated by edaphic properties determine the soil carbon stock in Tibetan alpine grasslands. Catena, 2021, 206, 105570.	2.2	19
133	Variance and main drivers of field nitrous oxide emissions: A global synthesis. Journal of Cleaner Production, 2022, 353, 131686.	4.6	19
134	Light Competition and Biodiversity Loss Cause Saturation Response of Aboveground Net Primary Productivity to Nitrogen Enrichment. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005556.	1.3	18
135	Increased CO2 emissions surpass reductions of non-CO2 emissions more under higher experimental warming in an alpine meadow. Science of the Total Environment, 2021, 769, 144559.	3.9	18
136	Effects of interspecific competition and nitrogen seasonality on the photosynthetic characteristics of C3 and C4 grasses. Environmental and Experimental Botany, 2006, 57, 270-277.	2.0	17
137	Functional traits along a transect. Functional Ecology, 2018, 32, 4-9.	1.7	17
138	A global synthesis reveals increases in soil greenhouse gas emissions under forest thinning. Science of the Total Environment, 2022, 804, 150225.	3.9	17
139	Differential mechanisms underlying responses of soil bacterial and fungal communities to nitrogen and phosphorus inputs in a subtropical forest. Peerl, 2019, 7, e7631.	0.9	17
140	Comparison of Photosynthetic Traits Between Two Typical Shrubs: Legume and Non-Legume in Hunshandak Sandland. Photosynthetica, 2003, 41, 111-116.	0.9	16
141	Gas Exchange and Water Use Efficiency of Three Native Tree Species in Hunshandak Sandland of China. Photosynthetica, 2003, 41, 227-232.	0.9	16
142	Traits of Chlorophyll Fluorescence in 99 Plant Species from the Sparse-Elm Grassland in Hunshandak Sandland. Photosynthetica, 2004, 42, 243-249.	0.9	16
143	Divergent apparent temperature sensitivity of terrestrial ecosystem respiration. Journal of Plant Ecology, 2014, 7, 419-428.	1.2	16
144	Soil and climate determine differential responses of soil respiration to nitrogen and acid deposition along a forest transect. European Journal of Soil Biology, 2019, 93, 103097.	1.4	16

#	Article	IF	CITATIONS
145	Highâ€level rather than lowâ€level warming destabilizes plant community biomass production. Journal of Ecology, 2021, 109, 1607-1617.	1.9	16
146	Carbon management practices regulate soil bacterial communities in response to nitrogen addition in a pine forest. Plant and Soil, 2020, 452, 137-151.	1.8	16
147	Diel and Seasonal Dynamics of Ecosystemâ€Scale Methane Flux and Their Determinants in an Alpine Meadow. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1731-1745.	1.3	15
148	Shifting biomass allocation determines community water use efficiency under climate warming. Environmental Research Letters, 2020, 15, 094041.	2.2	15
149	Moving toward a new era of ecosystem science. Geography and Sustainability, 2021, 2, 151-162.	1.9	15
150	Heavy thinning reduces soil organic carbon: Evidence from a 9-year thinning experiment in a pine plantation. Catena, 2022, 211, 106013.	2.2	15
151	Speciesâ€specific Response of Photosynthesis to Burning and Nitrogen Fertilization. Journal of Integrative Plant Biology, 2008, 50, 565-574.	4.1	14
152	Crowther et al. reply. Nature, 2018, 554, E7-E8.	13.7	14
153	Integrative ecology in the era of big dataâ€"From observation to prediction. Science China Earth Sciences, 2020, 63, 1429-1442.	2.3	14
154	Tree mortality in a warming world: causes, patterns, and implications. Environmental Research Letters, 2022, 17, 030201.	2.2	14
155	Divergent biomass partitioning to aboveground and belowground across forests in China. Journal of Plant Ecology, 2018, 11, 484-492.	1.2	13
156	Plants with lengthened phenophases increase their dominance under warming in an alpine plant community. Science of the Total Environment, 2020, 728, 138891.	3.9	13
157	Different responses of soil respiration and its components to nitrogen and phosphorus addition in a subtropical secondary forest. Forest Ecosystems, 2021, 8, .	1.3	13
158	Gas Exchange and Chlorophyll Fluorescence Response to Simulated Rainfall in Hedysarum fruticosum var. mongolicum. Photosynthetica, 2004, 42, 1-6.	0.9	12
159	Control of sandstorms in Inner Mongolia, China. Environmental Conservation, 2004, 31, 269-273.	0.7	12
160	A sand-fixing pioneer C3 species in sandland displays characteristics of C4 metabolism. Environmental and Experimental Botany, 2006, 57, 123-130.	2.0	12
161	Ecosystem Carbon Use Efficiency Is Insensitive to Nitrogen Addition in an Alpine Meadow. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2388-2398.	1.3	12
162	Effects of Mowing on Methane Uptake in a Semiarid Grassland in Northern China. PLoS ONE, 2012, 7, e35952.	1.1	12

#	Article	IF	CITATIONS
163	Experimental warming shifts coupling of carbon and nitrogen cycles in an alpine meadow. Journal of Plant Ecology, 2021, 14, 541-554.	1.2	11
164	Increased annual methane uptake driven by warmer winters in an alpine meadow. Global Change Biology, 2022, 28, 3246-3259.	4.2	11
165	Ecosystem restoration and belowground multifunctionality: A network view. Ecological Applications, 2022, 32, e2575.	1.8	11
166	Potentials for Combating Desertification in Hunshandak Sandland Through Nature Reserve. Environmental Management, 2005, 35, 453-460.	1.2	10
167	Elevated atmospheric carbon dioxide concentration stimulates soil microbial activity and impacts water-extractable organic carbon in an agricultural soil. Biogeochemistry, 2015, 122, 253-267.	1.7	10
168	Different Responses and Links of N:P Ratio Among Ecosystem Components Under Nutrient Addition in a Temperate Forest. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3158-3167.	1.3	10
169	Varying soil respiration under long-term warming and clipping due to shifting carbon allocation toward below-ground. Agricultural and Forest Meteorology, 2021, 304-305, 108408.	1.9	10
170	Mature forest shows little increase in carbon uptake in a CO2-enriched atmosphere. Nature, 2020, 580, 191-192.	13.7	10
171	Global evidence on the asymmetric response of gross primary productivity to interannual precipitation changes. Science of the Total Environment, 2022, 814, 152786.	3.9	10
172	Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of the Total Environment, 2018, 635, 423-431.	3.9	9
173	Contrasting nutrient-mediated responses between surface and deep fine root biomass to N addition in poplar plantations on the east coast of China. Forest Ecology and Management, 2021, 490, 119152.	1.4	9
174	Ecophysiological Response of Plants to Combined Pollution from Heavy-duty Vehicles and Industrial Emissions in Higher Humidity. Journal of Integrative Plant Biology, 2006, 48, 1391-1400.	4.1	8
175	Experimental warming amplified opposite impacts of drought vs. wet extremes on ecosystem carbon cycle in a tallgrass prairie. Agricultural and Forest Meteorology, 2019, 276-277, 107635.	1.9	7
176	Dynamics of soil water extractable organic carbon and inorganic nitrogen and their environmental controls in mountain forest and meadow ecosystems in China. Catena, 2020, 187, 104338.	2.2	7
177	Shifting community composition determines the biodiversity–productivity relationship under increasing precipitation and N deposition. Journal of Vegetation Science, 2021, 32, e12998.	1.1	7
178	Nitrogen use efficiency of terrestrial plants in China: geographic patterns, evolution, and determinants. Ecological Processes, $2021,10,.$	1.6	7
179	Global patterns and drivers of soil nematodes in response to nitrogen enrichment. Catena, 2022, 213, 106235.	2.2	7
180	Long-term effects of forest thinning on soil respiration and its components in a pine plantation. Forest Ecology and Management, 2022, 513, 120189.	1.4	7

#	Article	IF	Citations
181	Drought shrinks terrestrial upland resilience to climate change. Global Ecology and Biogeography, 2020, 29, 1840-1851.	2.7	6
182	Clipping increases ecosystem carbon sequestration and its sensitivity to precipitation change in an alpine meadow. Plant and Soil, 2021, 458, 165-174.	1.8	6
183	Temperature Sensitivity of Canopy Photosynthesis Phenology in Northern Ecosystems. , 2013, , 503-519.		6
184	Tracking Global Patterns of Droughtâ€Induced Productivity Loss Along Severity Gradient. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	6
185	Photosynthetic Response to Soil Water Contents of an Annual Pioneer C ₄ Grass (Agriophyllum squarrosum) in Hunshandak Sandland, China. Photosynthetica, 2003, 41, 293-296.	0.9	5
186	Alleviation of light limitation increases plant diversity and ecosystem carbon sequestration under nitrogen enrichment in an alpine meadow. Agricultural and Forest Meteorology, 2021, 298-299, 108269.	1.9	5
187	Heterotrophic respiration and its proportion to total soil respiration decrease with warming but increase with clipping. Catena, 2022, 215, 106321.	2.2	5
188	Nitrogen enrichment alters climate sensitivity of biodiversity and productivity differentially and reverses the relationship between them in an alpine meadow. Science of the Total Environment, 2022, 835, 155418.	3.9	5
189	Contrasting effects of clipping and nutrient addition on reproductive traits of <i>Heteropappus altaicus</i> at the individual and population levels. Ecological Research, 2010, 25, 867-874.	0.7	4
190	Hysteretic relationship between plant productivity and methane uptake in an alpine meadow. Agricultural and Forest Meteorology, 2020, 288-289, 107982.	1.9	4
191	Gas exchanges of an endangered species Syringa pinnatifolia and a widespread congener S. oblata. Photosynthetica, 2004, 42, 529-534.	0.9	3
192	Spatial variations in terrestrial net ecosystem productivity and its local indicators. Biogeosciences, 2020, 17, 6237-6246.	1.3	3
193	陜°´æ¼å±€æ"¹åӻèfŒæ™⁻下土å£#¼å¸ååŒ−的主è¦å½±å"å›ç´åŠå…¶è°f控过程. Chinese Journal of Pl	antoE c olog	gy, 2 017, 41,
194	Patterns and affecting factors of nitrogen use efficiency of plant leaves and roots in Nei Mongol and Qinghai-Xizang Plateau grasslands. Chinese Journal of Plant Ecology, 2019, 43, 566-575.	0.3	3
195	Dryness controls temperature-optimized gross primary productivity across vegetation types. Agricultural and Forest Meteorology, 2022, 323, 109073.	1.9	3
196	Warmer and wetter climate promotes net primary production in <scp>C₄</scp> grassland with additional enhancement by hay harvesting. Ecosphere, 2022, 13, .	1.0	2
197	Reparameterization Required After Model Structure Changes From Carbon Only to Carbonâ€Nitrogen Coupling. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	2
198	Direct N2O emission from agricultural soils in Poland between 1960 and 2009. Regional Environmental Change, 2014, 14, 1073-1082.	1.4	1

Shuli Niu

#	Article	IF	CITATIONS
199	Microbes drive global soil nitrogen mineralization and availability., 2019, 25, 1078.		1
200	Seasonal and Inter-Annual Variations of Carbon Dioxide Fluxes and Their Determinants in an Alpine Meadow. Frontiers in Plant Science, 0, 13 , .	1.7	1
201	Global Change and Terrestrial Ecosystems. Springer Geography, 2017, , 205-232.	0.3	O
202	Spatial analysis of growing season peak control over gross primary production in northern ecosystems using modis-GPP dataset. , 2017, , .		0