Lee Bardwell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3541615/publications.pdf

Version: 2024-02-01

147726 168321 4,456 57 31 53 h-index citations g-index papers 58 58 58 3971 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	BRACHYURY and CDX2 Mediate BMP-Induced Differentiation of Human and Mouse Pluripotent Stem Cells into Embryonic and Extraembryonic Lineages. Cell Stem Cell, 2011, 9, 144-155.	5.2	340
2	Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair. Cell, 1993, 75, 1379-1387.	13.5	337
3	A walk-through of the yeast mating pheromone response pathway. Peptides, 2005, 26, 339-350.	1.2	319
4	Inhibitory and activating functions for MAPK Kss1 in the S. cerevisiae filamentous- growth signalling pathway. Nature, 1997, 390, 85-88.	13.7	266
5	Specific cleavage of model recombination and repair intermediates by the yeast Rad1-Rad10 DNA endonuclease. Science, 1994, 265, 2082-2085.	6.0	264
6	A walk-through of the yeast mating pheromone response pathway. Peptides, 2004, 25, 1465-1476.	1.2	236
7	Yeast DNA repair and recombination proteins Rad1 and Rad1O constitute a single-stranded-DNA endonuclease. Nature, 1993, 362, 860-862.	13.7	203
8	A signaling mucin at the head of the Cdc42- and MAPK-dependent filamentous growth pathway in yeast. Genes and Development, 2004, 18, 1695-1708.	2.7	192
9	Mechanisms of MAPK signalling specificity. Biochemical Society Transactions, 2006, 34, 837-841.	1.6	176
10	Specificity of MAP Kinase Signaling in Yeast Differentiation Involves Transient versus Sustained MAPK Activation. Molecular Cell, 2001, 8, 683-691.	4.5	166
11	Signal Propagation and Regulation in the Mating Pheromone Response Pathway of the Yeast Saccharomyces cerevisiae. Developmental Biology, 1994, 166, 363-379.	0.9	163
12	A Conserved Docking Site in MEKs Mediates High-affinity Binding to MAP Kinases and Cooperates with a Scaffold Protein to Enhance Signal Transmission. Journal of Biological Chemistry, 2001, 276, 10374-10386.	1.6	161
13	Selectivity of Docking Sites in MAPK Kinases. Journal of Biological Chemistry, 2009, 284, 13165-13173.	1.6	113
14	A Docking Site in MKK4 Mediates High Affinity Binding to JNK MAPKs and Competes with Similar Docking Sites in JNK Substrates. Journal of Biological Chemistry, 2003, 278, 32662-32672.	1.6	97
15	Docking sites on mitogen-activated protein kinase (MAPK) kinases, MAPK phosphatases and the Elk-1 transcription factor compete for MAPK binding and are crucial for enzymic activity. Biochemical Journal, 2003, 370, 1077-1085.	1.7	95
16	Anthrax lethal factor-cleavage products of MAPK (mitogen-activated protein kinase) kinases exhibit reduced binding to their cognate MAPKs. Biochemical Journal, 2004, 378, 569-577.	1.7	95
17	Computational Prediction and Experimental Verification of New MAP Kinase Docking Sites and Substrates Including Gli Transcription Factors. PLoS Computational Biology, 2010, 6, e1000908.	1.5	80
18	Yeast nucleotide excision repair proteins Rad2 and Rad4 interact with RNA polymerase II basal transcription factor b (TFIIH) Molecular and Cellular Biology, 1994, 14, 3569-3576.	1.1	76

#	Article	IF	CITATIONS
19	A conserved protein interaction network involving the yeast MAP kinases Fus3 and Kss1. Journal of Cell Biology, 2004, 164, 267-277.	2.3	76
20	Interacting JNK-docking Sites in MKK7 Promote Binding and Activation of JNK Mitogen-activated Protein Kinases. Journal of Biological Chemistry, 2006, 281, 13169-13179.	1.6	67
21	Mitogen-Activated Protein Kinases with Distinct Requirements for Ste5 Scaffolding Influence Signaling Specificity in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2005, 25, 1793-1803.	1.1	64
22	A theoretical framework for specificity in cell signaling. Molecular Systems Biology, 2005, 1 , 2005.0023.	3.2	64
23	Mathematical Models of Specificity in Cell Signaling. Biophysical Journal, 2007, 92, 3425-3441.	0.2	64
24	Inhibition of Rad3 DNA helicase activity by DNA adducts and abasic sites: implications for the role of a DNA helicase in damage-specific incision of DNA. Biochemistry, 1993, 32, 613-621.	1.2	62
25	Oscillatory Phosphorylation of Yeast Fus3 MAP Kinase Controls Periodic Gene Expression and Morphogenesis. Current Biology, 2008, 18, 1700-1706.	1.8	62
26	Yeast DNA recombination and repair proteins Rad 1 and Radio constitute a complex in vivo mediated by localized hydrophobic domains. Molecular Microbiology, 1993, 8, 1177-1188.	1.2	61
27	Yeast RAD3 protein binds directly to both SSL2 and SSL1 proteins: implications for the structure and function of transcription/repair factor b Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 3926-3930.	3.3	44
28	Nucleotide excision repair in the yeast Saccharomyces cerevisiae: its relationship to specialized mitotic recombination and RNA polymerase II basal transcription. Philosophical Transactions of the Royal Society B: Biological Sciences, 1995, 347, 63-68.	1.8	44
29	Mitogen-activated protein kinase (MAPK)-docking sites in MAPK kinases function as tethers that are crucial for MAPK regulation in vivo. Cellular Signalling, 2006, 18, 123-134.	1.7	40
30	A Combination of Multisite Phosphorylation and Substrate Sequestration Produces Switchlike Responses. Biophysical Journal, 2010, 98, 1396-1407.	0.2	40
31	Analysis of mitogen-activated protein kinase activation and interactions with regulators and substrates. Methods, 2006, 40, 213-223.	1.9	33
32	Casein kinase 2 reverses tail-independent inactivation of kinesin-1. Nature Communications, 2012, 3, 754.	5.8	33
33	Characterization of an ERK-binding Domain in Microphthalmia-associated Transcription Factor and Differential Inhibition of ERK2-mediated Substrate Phosphorylation. Journal of Biological Chemistry, 2005, 280, 42051-42060.	1.6	32
34	Transcription and nucleotide excision repair â€" reflections, considerations and recent biochemical insights. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1994, 307, 5-14.	0.4	30
35	Combining docking site and phosphosite predictions to find new substrates: Identification of smoothelin-like-2 (SMTNL2) as a c-Jun N-terminal kinase (JNK) substrate. Cellular Signalling, 2013, 25, 2518-2529.	1.7	28
36	Two Hydrophobic Residues Can Determine the Specificity of Mitogen-activated Protein Kinase Docking Interactions. Journal of Biological Chemistry, 2015, 290, 26661-26674.	1.6	25

#	Article	IF	CITATIONS
37	Protein Scaffolds Can Enhance the Bistability of Multisite Phosphorylation Systems. PLoS Computational Biology, 2012, 8, e1002551.	1.5	24
38	Noise filtering tradeoffs in spatial gradient sensing and cell polarization response. BMC Systems Biology, 2011, 5, 196.	3.0	22
39	The Hippo pathway kinases LATS1 and LATS2 attenuate cellular responses to heavy metals through phosphorylating MTF1. Nature Cell Biology, 2022, 24, 74-87.	4.6	22
40	The mutagenic and carcinogenic effects of gene transfer. Mutagenesis, 1989, 4, 245-253.	1.0	21
41	Ultrasensitive Responses and Specificity in Cell Signaling. BMC Systems Biology, 2010, 4, 119.	3.0	19
42	Characterization of the RAD10 gene of Saccharomyces cerevisiae and purification of Rad10 protein. Biochemistry, 1990, 29, 3119-3126.	1.2	18
43	The WW domain of the scaffolding protein IQGAP1 is neither necessary nor sufficient for binding to the MAPKs ERK1 and ERK2. Journal of Biological Chemistry, 2017, 292, 8750-8761.	1.6	17
44	Signal Transduction: Turning a Switch into a Rheostat. Current Biology, 2008, 18, R910-R912.	1.8	14
45	CK2 activates kinesin via induction of a conformational change. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7000-7005.	3.3	8
46	Miles to go (mtgo) encodes FNDC3 proteins that interact with the chaperonin subunit CCT3 and are required for NMJ branching and growth in Drosophila. Developmental Biology, 2019, 445, 37-53.	0.9	8
47	ERK2 MAP kinase regulates SUFU binding by multisite phosphorylation of GLI1. Life Science Alliance, 2022, 5, e202101353.	1.3	8
48	Recent Insights on DNA Repair: The Mechanism of Damaged Nucleotide Excision in Eukaryotes and Its Relationship to Other Cellular Processes. Annals of the New York Academy of Sciences, 1994, 726, 281-291.	1.8	7
49	Plant Signalling Pathways: A Comparative Evolutionary Overview. Current Biology, 2011, 21, R317-R319.	1.8	6
50	Synthetic Biology: Modulating the MAP Kinase Module. Current Biology, 2011, 21, R249-R251.	1.8	4
51	Cancer Mutations: Molecular MEKanisms. Current Biology, 2020, 30, R222-R224.	1.8	4
52	Pseudokinases: Flipping the ATP for AMPylation. Current Biology, 2019, 29, R23-R25.	1.8	3
53	G-Protein Signaling: A New Branch in an Old Pathway. Current Biology, 2006, 16, R853-R855.	1.8	2
54	Nucleotide excision repair in the yeast Saccharomyces cerevisiae: its relationship to specialized mitotic recombination and RNA polymerase II basal transcription., 1995,, 59-64.		1

#	Article	IF	CITATIONS
55	Oscillatory Phosphorylation of Yeast Fus3 MAP Kinase Controls Periodic Gene Expression and Morphogenesis. Current Biology, 2008, 18, 1897.	1.8	0
56	Effect of magnitude and variability of energy of activation in multisite ultrasensitive biochemical processes. PLoS Computational Biology, 2020, 16, e1007966.	1.5	0
57	A Scalable and Integrative System for Pathway Bioinformatics and Systems Biology. Advances in Experimental Medicine and Biology, 2010, 680, 523-534.	0.8	0