Zhenyu Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3541469/publications.pdf

Version: 2024-02-01

73 3,590 32 papers citations h-index

73 73 73 2281 all docs docs citations times ranked citing authors

59

g-index

#	Article	IF	CITATIONS
1	Environment friendly chemical mechanical polishing of copper. Applied Surface Science, 2019, 467-468, 5-11.	6.1	214
2	Changes in surface layer of silicon wafers from diamond scratching. CIRP Annals - Manufacturing Technology, 2015, 64, 349-352.	3.6	208
3	A novel approach of chemical mechanical polishing for a titanium alloy using an environment-friendly slurry. Applied Surface Science, 2018, 427, 409-415.	6.1	197
4	New Deformation-Induced Nanostructure in Silicon. Nano Letters, 2018, 18, 4611-4617.	9.1	182
5	A novel approach of mechanical chemical grinding. Journal of Alloys and Compounds, 2017, 726, 514-524.	5 . 5	150
6	Development of a novel chemical mechanical polishing slurry and its polishing mechanisms on a nickel alloy. Applied Surface Science, 2020, 506, 144670.	6.1	143
7	A novel approach of high speed scratching on silicon wafers at nanoscale depths of cut. Scientific Reports, 2015, 5, 16395.	3.3	133
8	Real-Time, Quantitative Lighting-up Detection of Telomerase in Urines of Bladder Cancer Patients by AlEgens. Analytical Chemistry, 2015, 87, 6822-6827.	6.5	119
9	Accessory enzymes influence cellulase hydrolysis of the model substrate and the realistic lignocellulosic biomass. Enzyme and Microbial Technology, 2015, 79-80, 42-48.	3.2	118
10	Green chemical mechanical polishing of sapphire wafers using a novel slurry. Nanoscale, 2020, 12, 22518-22526.	5.6	118
11	A model for nanogrinding based on direct evidence of ground chips of silicon wafers. Science China Technological Sciences, 2013, 56, 2099-2108.	4.0	109
12	The impact of glycerol organosolv pretreatment on the chemistry and enzymatic hydrolyzability of wheat straw. Bioresource Technology, 2015, 187, 354-361.	9.6	107
13	Enhanced Thermal Conductivity of Epoxy Composites Filled with 2D Transition Metal Carbides (MXenes) with Ultralow Loading. Scientific Reports, 2019, 9, 9135.	3.3	104
14	Engineering Nanostructure–Interface of Photoanode Materials Toward Photoelectrochemical Water Oxidation. Advanced Materials, 2021, 33, e2005389.	21.0	100
15	A novel approach of chemical mechanical polishing for cadmium zinc telluride wafers. Scientific Reports, 2016, 6, 26891.	3.3	89
16	Chemical mechanical polishing for sapphire wafers using a developed slurry. Journal of Manufacturing Processes, 2021, 62, 762-771.	5.9	89
17	A novel approach of chemical mechanical polishing using environment-friendly slurry for mercury cadmium telluride semiconductors. Scientific Reports, 2016, 6, 22466.	3.3	85
18	Grinding of silicon wafers using an ultrafine diamond wheel of a hybrid bond material. International Journal of Machine Tools and Manufacture, 2011, 51, 18-24.	13.4	79

#	Article	IF	CITATIONS
19	Quencher Group Induced High Specificity Detection of Telomerase in Clear and Bloody Urines by AIEgens. Analytical Chemistry, 2015, 87, 9487-9493.	6.5	70
20	A novel approach of high-performance grinding using developed diamond wheels. International Journal of Advanced Manufacturing Technology, 2017, 91, 3315-3326.	3.0	70
21	Macroscale Superlubricity Enabled by Grapheneâ€Coated Surfaces. Advanced Science, 2020, 7, 1903239.	11.2	64
22	Unprecedented Piezoresistance Coefficient in Strained Silicon Carbide. Nano Letters, 2019, 19, 6569-6576.	9.1	62
23	Lab in a Tube: Sensitive Detection of MicroRNAs in Urine Samples from Bladder Cancer Patients Using a Single-Label DNA Probe with AlEgens. ACS Applied Materials & Samp; Interfaces, 2015, 7, 16813-16818.	8.0	61
24	Direct formation of wafer-scale single-layer graphene films on the rough surface substrate by PECVD. Carbon, 2018, 129, 456-461.	10.3	60
25	Ultrahigh Recovery of Fracture Strength on Mismatched Fractured Amorphous Surfaces of Silicon Carbide. ACS Nano, 2019, 13, 7483-7492.	14.6	54
26	Nanoscale Wear Layers on Silicon Wafers Induced by Mechanical Chemical Grinding. Tribology Letters, 2017, 65, 1.	2.6	47
27	Nanoscale Material Removal Mechanism of Soft-Brittle HgCdTe Single Crystals Under Nanogrinding by Ultrafine Diamond Grits. Tribology Letters, 2012, 46, 95-100.	2.6	45
28	Enhanced thermal conductivity of epoxy composites filled with tetrapod-shaped ZnO. RSC Advances, 2018, 8, 12337-12343.	3.6	41
29	Ultrahigh hardness on a face-centered cubic metal. Applied Surface Science, 2017, 416, 891-900.	6.1	39
30	Highly flexible few-layer Ti ₃ C ₂ MXene/cellulose nanofiber heat-spreader films with enhanced thermal conductivity. New Journal of Chemistry, 2020, 44, 7186-7193.	2.8	38
31	<i>ln situ</i> TEM observation of rebonding on fractured silicon carbide. Nanoscale, 2018, 10, 6261-6269.	5.6	37
32	Excellent tribological properties of epoxyâ€"Ti3C2 with three-dimensional nanosheets composites. Friction, 2021, 9, 734-746.	6.4	36
33	Unprecedented enhancement of wear resistance for epoxy-resin graphene composites. Nanoscale, 2021, 13, 2855-2867.	5.6	34
34	Chemical mechanical polishing and nanomechanics of semiconductor CdZnTe single crystals. Semiconductor Science and Technology, 2008, 23, 105023.	2.0	32
35	A novel approach to fabricating a nanotwinned surface on a ternary nickel alloy. Materials and Design, 2016, 106, 313-320.	7.0	31
36	In Situ TEM Study of Interaction between Dislocations and a Single Nanotwin under Nanoindentation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 29451-29456.	8.0	30

#	Article	IF	CITATIONS
37	Characterization of Nanoscale Chips and a Novel Model for Face Nanogrinding on Soft-Brittle HgCdTe Films. Tribology Letters, 2013, 49, 203-215.	2.6	29
38	Nanoscale machinability and subsurface damage machined by CMP of soft-brittle CdZnTe crystals. International Journal of Advanced Manufacturing Technology, 2010, 47, 1105-1112.	3.0	26
39	A review: green chemical mechanical polishing for metals and brittle wafers. Journal Physics D: Applied Physics, 2021, 54, 373001.	2.8	25
40	New deformation mechanism of soft-brittle CdZnTe single crystals under nanogrinding. Scripta Materialia, 2010, 63, 621-624.	5.2	22
41	Non-spherical abrasives with ordered mesoporous structures for chemical mechanical polishing. Science China Materials, 2021, 64, 2747-2763.	6.3	21
42	Subsurface crystal lattice deformation machined by ultraprecision grinding of soft-brittle CdZnTe crystals. International Journal of Advanced Manufacturing Technology, 2010, 47, 1065-1081.	3.0	20
43	Development of a minimal chemically defined medium for Ketogulonicigenium vulgare WSH001 based on its genome-scale metabolic model. Journal of Biotechnology, 2014, 169, 15-22.	3.8	20
44	Waterborne polyurethane conjugated with novel diol chain-extender bearing cyclic phosphoramidate lateral group: synthesis, flammability and thermal degradation mechanism. RSC Advances, 2016, 6, 56610-56622.	3.6	20
45	A novel process of chemical mechanical polishing for FV520B steel. Journal of Manufacturing Processes, 2020, 59, 51-57.	5.9	20
46	Ultrahigh hardness and synergistic mechanism of a nanotwinned structure of cadmium zinc telluride. Scripta Materialia, 2013, 68, 747-750.	5.2	18
47	Enhanced tribological properties of aligned graphene-epoxy composites. Friction, 2022, 10, 854-865.	6.4	18
48	Material removal mechanism of precision grinding of soft-brittle CdZnTe wafers. International Journal of Advanced Manufacturing Technology, 2010, 46, 563-569.	3.0	17
49	Nanoscale solely amorphous layer in silicon wafers induced by a newly developed diamond wheel. Scientific Reports, 2016, 6, 35269.	3.3	14
50	Design of composite abrasives and substrate materials for chemical mechanical polishing applications. Applied Nanoscience (Switzerland), 2020, 10, 1379-1393.	3.1	14
51	Construction and optimization of <i>trans</i> ê4â€hydroxyâ€Lâ€proline production recombinant <i>E. coli</i> strain taking the glycerol as carbon source. Journal of Chemical Technology and Biotechnology, 2016, 91, 2389-2398.	3.2	12
52	Formation mechanism of fivefold deformation twins in a face-centered cubic alloy. Scientific Reports, 2017, 7, 45405.	3.3	12
53	Tracing the Active Phase and Dynamics for Carbon Nanofiber Growth on Nickel Catalyst Using Environmental Transmission Electron Microscopy. Small Methods, 2022, 6, e2200235.	8.6	12
54	Deformation induced new pathways in silicon. Nanoscale, 2019, 11, 9862-9868.	5.6	10

#	Article	IF	CITATIONS
55	Identification of COP9 Signalosome Subunit Genes in Bactrocera dorsalis and Functional Analysis of csn3 in Female Fecundity. Frontiers in Physiology, 2019, 10, 162.	2.8	7
56	Research on different cooling methods in the machining of CGI and GCI. Applied Nanoscience (Switzerland), 2020, 10, 2177-2188.	3.1	7
57	Zinc Methionine Improves the Growth Performance of Meat Ducks by Enhancing the Antioxidant Capacity and Intestinal Barrier Function. Frontiers in Veterinary Science, 2022, 9, 774160.	2.2	7
58	Effects of thickness on thermoelectric properties of Bi0.5Sb1.5Te3 thin films. Applied Nanoscience (Switzerland), 2020, 10, 2375-2381.	3.1	6
59	Deformation induced complete amorphization at nanoscale in a bulk silicon. AIP Advances, 2019, 9, .	1.3	5
60	Dynamics of the charging-induced imaging instability in transmission electron microscopy. Nanoscale Advances, 2021, 3, 3035-3040.	4.6	5
61	Macroscale Superlubricity: Macroscale Superlubricity Enabled by Grapheneâ€Coated Surfaces (Adv. Sci.) Tj ETQq	1 1 0.784 11.2	314 rgBT /0\
62	Unusual stress behaviour of La2O3- and CeO2-doped diamond-like carbon nanofilms. Philosophical Magazine Letters, 2008, 88, 567-574.	1.2	3
63	Characterization of the complex involved in regulating V-ATPase activity of the vacuolar and endosomal membrane. Journal of Bioenergetics and Biomembranes, 2017, 49, 347-355.	2.3	3
64	Self-healing on mismatched fractured composite surfaces of SiC with a diameter of 180 nm. Nanoscale, 2020, 12, 19617-19627.	5.6	3
65	Quantitatively investigating the self-attraction of nanowires. Nano Research, 2022, 15, 3729-3736.	10.4	3
66	Experimental and Theoretical Investigations on Diamond Wire Sawing for a NdFeB Magnet. Materials, 2022, 15, 3034.	2.9	3
67	Nanocutting Process of CdZnTe Single Crystals. Materials and Manufacturing Processes, 2009, 24, 504-508.	4.7	2
68	Deformation-induced silicon nanostructures. APL Materials, 2020, 8, .	5.1	2
69	Investigation on wear characteristics of cemented carbide tools in finish turning spherical shells of pure iron. International Journal of Advanced Manufacturing Technology, 2022, 119, 4951-4961.	3.0	2
70	ATPR regulates human mantle cell lymphoma cells differentiation via SOX11/CyclinD1/Rb/E2F1. Cellular Signalling, 2022, 93, 110280.	3.6	2
71	An $\langle i \rangle$ in situ $\langle i \rangle$ TEM nanoindentation-induced new nanostructure in cadmium zinc telluride. Nanoscale, 2021, 13, 7169-7175.	5.6	1
72	Editorial: special issue "ultraprecision 2019― Applied Nanoscience (Switzerland), 2021, 11, 735-735.	3.1	0

ZHENYU ZHANG

#	Article	IF	CITATIONS
73	Effect of Internal Air Flow on Local Postweld Heat Treatment for Large Diameter ASME P92 Steel-Welded Pipes. Journal of Pressure Vessel Technology, Transactions of the ASME, 2020, 142, .	0.6	O