Allan Randrup Thomsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3541212/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vaccines to prevent COVID-19: A living systematic review with Trial Sequential Analysis and network meta-analysis of randomized clinical trials. PLoS ONE, 2022, 17, e0260733.	1.1	60
2	A Novel H-2d Epitope for Influenza A Polymerase Acidic Protein. Viruses, 2022, 14, 601.	1.5	0
3	Long-term maintenance of lung resident memory T cells is mediated by persistent antigen. Mucosal Immunology, 2021, 14, 92-99.	2.7	64
4	Inter-vendor variance of enteric eukaryotic DNA viruses in specific pathogen free C57BL/6N mice. Research in Veterinary Science, 2021, 136, 1-5.	0.9	9
5	Efficient Control of Zika Virus Infection Induced by a Non-Replicating Adenovector Encoding Zika Virus NS1/NS2 Antigens Fused to the MHC Class II-Associated Invariant Chain. Viruses, 2021, 13, 2215.	1.5	0
6	Pathogenic CD8+ Epidermis-Resident Memory T Cells Displace Dendritic Epidermal T Cells in Allergic Dermatitis. Journal of Investigative Dermatology, 2020, 140, 806-815.e5.	0.3	28
7	A Vaccine Displaying a Trimeric Influenza-A HA Stem Protein on Capsid-Like Particles Elicits Potent and Long-Lasting Protection in Mice. Vaccines, 2020, 8, 389.	2.1	13
8	Vaccines to prevent COVID-19: a protocol for a living systematic review with network meta-analysis including individual patient data (The LIVING VACCINE Project). Systematic Reviews, 2020, 9, 262.	2.5	23
9	A Systematic, Unbiased Mapping of CD8+ and CD4+ T Cell Epitopes in Yellow Fever Vaccinees. Frontiers in Immunology, 2020, 11, 1836.	2.2	13
10	Effector CD8 T Cell-Dependent Zika Virus Control in the CNS: A Matter of Time and Numbers. Frontiers in Immunology, 2020, 11, 1977.	2.2	10
11	MHC class II invariant chain–adjuvanted viral vectored vaccines enhances T cell responses in humans. Science Translational Medicine, 2020, 12, .	5.8	20
12	Harnessing Cross-Reactive CD8 ⁺ T _{RM} Cells for Long-Standing Protection Against Influenza A Virus. Viral Immunology, 2020, 33, 201-207.	0.6	6
13	Functionally Competent, PD-1+ CD8+ Trm Cells Populate the Brain Following Local Antigen Encounter. Frontiers in Immunology, 2020, 11, 595707.	2.2	6
14	A â€̃Furry-Tale' of Zika Virus Infection: What Have We Learned from Animal Models?. Viruses, 2019, 11, 29.	1.5	20
15	Local Antigen Encounter Is Essential for Establishing Persistent CD8+ T-Cell Memory in the CNS. Frontiers in Immunology, 2019, 10, 351.	2.2	20
16	Chemokine Expression in Murine RPE/Choroid in Response to Systemic Viral Infection and Elevated Levels of Circulating Interferon-γ. , 2019, 60, 192.		9
17	Commentary: Endogenous glucocorticoids control host resistance to viral infection through Âtissue-specific regulation of PD-1 expression on NK cells. Cellular and Molecular Immunology, 2019, 16, 203-204.	4.8	2
18	Analysis of adenovirus-induced immunity to infection with Listeria monocytogenes : Fading protection coincides with declining CD8 T cell numbers and phenotypic changes. Vaccine, 2018, 36, 2825-2832.	1.7	1

Allan Randrup Thomsen

#	Article	IF	CITATIONS
19	A new vaccination strategy to trigger specific CD4 T-cell response in chronic viral infection. Cellular and Molecular Immunology, 2018, 15, 868-869.	4.8	0
20	Lipocalin-2 Functions as Inhibitor of Innate Resistance to Mycobacterium tuberculosis. Frontiers in Immunology, 2018, 9, 2717.	2.2	26
21	Replication deficient human adenovirus vector serotype 19a/64: Immunogenicity in mice and female cynomolgus macaques. Vaccine, 2018, 36, 6212-6222.	1.7	6
22	A New In Vivo Model to Study Protective Immunity to Zika Virus Infection in Mice With Intact Type I Interferon Signaling. Frontiers in Immunology, 2018, 9, 593.	2.2	38
23	Non-redundant ISGF3 Components Promote NK Cell Survival in an Auto-regulatory Manner during Viral Infection. Cell Reports, 2018, 24, 1949-1957.e6.	2.9	23
24	Adaptive immune responses to booster vaccination against yellow fever virus are much reduced compared to those after primary vaccination. Scientific Reports, 2017, 7, 662.	1.6	35
25	Broadening CD4 ⁺ and CD8 ⁺ T Cell Responses against Hepatitis C Virus by Vaccination with NS3 Overlapping Peptide Panels in Cross-Priming Liposomes. Journal of Virology, 2017, 91, .	1.5	17
26	Mucosal Vaccination with Heterologous Viral Vectored Vaccine Targeting Subdominant SIV Accessory Antigens Strongly Inhibits Early Viral Replication. EBioMedicine, 2017, 18, 204-215.	2.7	15
27	EBI2 overexpression in mice leads to B1 B-cell expansion and chronic lymphocytic leukemia–like B-cell malignancies. Blood, 2017, 129, 866-878.	0.6	14
28	Rapid allergenâ€induced interleukinâ€17 and interferonâ€Î³ secretion by skinâ€resident memory CD8 ⁺ T cells. Contact Dermatitis, 2017, 76, 218-227.	0.8	71
29	Seasonal Influenza Split Vaccines Confer Partial Cross-Protection against Heterologous Influenza Virus in Ferrets When Combined with the CAF01 Adjuvant. Frontiers in Immunology, 2017, 8, 1928.	2.2	21
30	The combined action of mast cell chymase, tryptase and carboxypeptidase A3 protects against melanoma colonization of the lung. Oncotarget, 2017, 8, 25066-25079.	0.8	24
31	Vaccination with Replication Deficient Adenovectors Encoding YF-17D Antigens Induces Long-Lasting Protection from Severe Yellow Fever Virus Infection in Mice. PLoS Neglected Tropical Diseases, 2016, 10, e0004464.	1.3	20
32	Early life vaccination: Generation of adult-quality memory CD8+ T cells in infant mice using non-replicating adenoviral vectors. Scientific Reports, 2016, 6, 38666.	1.6	6
33	Combined local and systemic immunization is essential for durable T-cell mediated heterosubtypic immunity against influenza A virus. Scientific Reports, 2016, 6, 20137.	1.6	40
34	PB1 as a potential target for increasing the breadth of T-cell mediated immunity to Influenza A. Scientific Reports, 2016, 6, 35033.	1.6	12
35	Vaccine Targeting of Subdominant CD8+ T Cell Epitopes Increases the Breadth of the T Cell Response upon Viral Challenge, but May Impair Immediate Virus Control. Journal of Immunology, 2016, 196, 2666-2676.	0.4	4
36	An innate antiviral pathway acting before interferons at epithelial surfaces. Nature Immunology, 2016, 17, 150-158.	7.0	59

3

#	Article	IF	CITATIONS
37	Targeting of Non-Dominant Antigens as a Vaccine Strategy to Broaden T-Cell Responses during Chronic Viral Infection. PLoS ONE, 2015, 10, e0117242.	1.1	16
38	CD8+ T Cells Complement Antibodies in Protecting against Yellow Fever Virus. Journal of Immunology, 2015, 194, 1141-1153.	0.4	70
39	Quantification of B16 Melanoma Cells in Lungs Using Triplex Q-PCR - A New Approach to Evaluate Melanoma Cell Metastasis and Tumor Control. PLoS ONE, 2014, 9, e87831.	1.1	19
40	Suppressors of Cytokine Signaling 1 and 3 Are Upregulated in Brain Resident Cells in Response to Virus-Induced Inflammation of the Central Nervous System via at Least Two Distinctive Pathways. Journal of Virology, 2014, 88, 14090-14104.	1.5	13
41	Co-Expression of Tumor Antigen and Interleukin-2 From an Adenoviral Vector Augments the Efficiency of Therapeutic Tumor Vaccination. Molecular Therapy, 2014, 22, 2107-2117.	3.7	5
42	<scp>IFN</scp> <i>Î³</i> and Perforin Cooperate to Control Infection and Prevent Fatal Pathology During Persistent Gammaherpesvirus Infection in Mice. Scandinavian Journal of Immunology, 2014, 79, 395-403.	1.3	6
43	Epicutaneous exposure to nickel induces nickel allergy in mice via a <scp>MyD88</scp> â€dependent and interleukinâ€1â€dependent pathway. Contact Dermatitis, 2014, 71, 224-232.	0.8	28
44	Midline 1 directs lytic granule exocytosis and cytotoxicity of mouse killer T cells. European Journal of Immunology, 2014, 44, 3109-3118.	1.6	16
45	Priming of CD8 T Cells by Adenoviral Vectors Is Critically Dependent on B7 and Dendritic Cells but Only Partially Dependent on CD28 Ligation on CD8 T Cells. Journal of Immunology, 2014, 193, 1223-1232.	0.4	15
46	Comparison of Vaccine-Induced Effector CD8 T Cell Responses Directed against Self- and Non–Self-Tumor Antigens: Implications for Cancer Immunotherapy. Journal of Immunology, 2013, 191, 3955-3967.	0.4	57
47	Qualitative and Quantitative Analysis of Adenovirus Type 5 Vector-Induced Memory CD8 T Cells: Not as Bad as Their Reputation. Journal of Virology, 2013, 87, 6283-6295.	1.5	28
48	Experimental Hyperactivity of the Endolymphatic Sac. Audiology and Neuro-Otology, 2013, 18, 125-133.	0.6	10
49	Adenovirus-Based Vaccine against <i>Listeria monocytogenes</i> : Extending the Concept of Invariant Chain Linkage. Journal of Immunology, 2013, 191, 4152-4164.	0.4	27
50	The Availability of a Functional Tumor Targeting T-Cell Repertoire Determines the Anti-Tumor Efficiency of Combination Therapy with Anti-CTLA-4 and Anti-4-1BB Antibodies. PLoS ONE, 2013, 8, e66081.	1.1	16
51	Differential Impact of Interferon Regulatory Factor 7 in Initiation of the Type I Interferon Response in the Lymphocytic Choriomeningitis Virus-Infected Central Nervous System versus the Periphery. Journal of Virology, 2012, 86, 7384-7392.	1.5	15
52	Sensing of RNA Viruses: a Review of Innate Immune Receptors Involved in Recognizing RNA Virus Invasion. Journal of Virology, 2012, 86, 2900-2910.	1.5	506
53	MyD88 Drives the IFN-Î ² Response to <i>Lactobacillus acidophilus</i> in Dendritic Cells through a Mechanism Involving IRF1, IRF3, and IRF7. Journal of Immunology, 2012, 189, 2860-2868.	0.4	63
54	Increased Immunogenicity and Protective Efficacy of Influenza M2e Fused to a Tetramerizing Protein. PLoS ONE, 2012, 7, e46395.	1.1	35

#	Article	IF	CITATIONS
55	TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice. Journal of Clinical Investigation, 2012, 122, 1368-1376.	3.9	141
56	Pre-Existing Vector Immunity Does Not Prevent Replication Deficient Adenovirus from Inducing Efficient CD8 T-Cell Memory and Recall Responses. PLoS ONE, 2012, 7, e34884.	1.1	24
57	Enhanced and Sustained CD8+ T Cell Responses with an Adenoviral Vector-Based Hepatitis C Virus Vaccine Encoding NS3 Linked to the MHC Class II Chaperone Protein Invariant Chain. Journal of Immunology, 2011, 186, 2355-2364.	0.4	57
58	CXCL10/CXCR3 signaling in glia cells differentially affects NMDAâ€induced cell death in CA and DG neurons of the mouse hippocampus. Hippocampus, 2011, 21, 220-232.	0.9	49
59	Vaccination against Lymphocytic Choriomeningitis Virus Infection in MHC Class II-Deficient Mice. Journal of Immunology, 2011, 186, 3997-4007.	0.4	22
60	The murine gammaherpesvirus-68 chemokine-binding protein M3 inhibits experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2010, 224, 45-50.	1.1	12
61	Interleukin-6 autoantibodies are involved in the pathogenesis of a subset of type 2 diabetes. Journal of Endocrinology, 2010, 204, 265-273.	1.2	25
62	The Role of CD80/CD86 in Generation and Maintenance of Functional Virus-Specific CD8+ T Cells in Mice Infected with Lymphocytic Choriomeningitis Virus. Journal of Immunology, 2010, 185, 1730-1743.	0.4	31
63	Quality of the Transgene-Specific CD8+ T Cell Response Induced by Adenoviral Vector Immunization Is Critically Influenced by Virus Dose and Route of Vaccination. Journal of Immunology, 2010, 184, 4431-4439.	0.4	50
64	In Vitro Propagation and Dynamics of T cells from Skin Biopsies by Methods Using Interleukins-2 and -4 or Anti-CD3/CD28 Antibody-coated Microbeads. Acta Dermato-Venereologica, 2010, 90, 468-473.	0.6	15
65	Adenoviral vaccination combined with CD40 stimulation and CTLA-4 blockage can lead to complete tumor regression in a murine melanoma model. Vaccine, 2010, 28, 6757-6764.	1.7	52
66	Fusion of a viral antigen to invariant chain leads to augmented T-cell immunity and improved protection in gene-gun DNA-vaccinated mice. Journal of General Virology, 2009, 90, 414-422.	1.3	20
67	Lymphocytic Choriomeningitis Virus-Induced Central Nervous System Disease: a Model for Studying the Role of Chemokines in Regulating the Acute Antiviral CD8 ⁺ T-Cell Response in an Immune-Privileged Organ. Journal of Virology, 2009, 83, 20-28.	1.5	24
68	Fulminant Lymphocytic Choriomeningitis Virus-Induced Inflammation of the CNS Involves a Cytokine-Chemokine-Cytokine-Chemokine Cascade. Journal of Immunology, 2009, 182, 1079-1087.	0.4	37
69	CXCR3 Directs Antigen-Specific Effector CD4+ T Cell Migration to the Lung During Parainfluenza Virus Infection. Journal of Immunology, 2009, 183, 4378-4384.	0.4	113
70	T-cell intrinsic expression of MyD88 is required for sustained expansion of the virus-specific CD8+ T-cell population in LCMV-infected mice. Journal of General Virology, 2009, 90, 423-431.	1.3	24
71	Expression and Role of CXCL10 during the Encephalitic Stage of Experimental and Clinical African Trypanosomiasis. Journal of Infectious Diseases, 2009, 200, 1556-1565.	1.9	77
72	Vaccination with an adenoviral vector encoding the tumor antigen directly linked to invariant chain induces potent CD4 ⁺ Tâ€cellâ€independent CD8 ⁺ Tâ€cellâ€mediated tumor control. European Journal of Immunology, 2009, 39, 2725-2736.	1.6	41

#	Article	IF	CITATIONS
73	Coâ€ordinating innate and adaptive immunity to viral infection: mobility is the key. Apmis, 2009, 117, 338-355.	0.9	37
74	Host-microbe relations. Apmis, 2009, 117, 309-310.	0.9	0
75	Mucosal immunization with recombinant adenoviral vectors expressing murine gammaherpesvirus-68 genes M2 and M3 can reduce latent viral load. Vaccine, 2009, 27, 6723-6730.	1.7	18
76	CD4 and CD8 T Cell Responses to the M. tuberculosis Ag85B-TB10.4 Promoted by Adjuvanted Subunit, Adenovector or Heterologous Prime Boost Vaccination. PLoS ONE, 2009, 4, e5139.	1.1	61
77	Circulating intercellular adhesion molecule-1 (ICAM-1) as an early and sensitive marker for virus-induced T cell activation. Clinical and Experimental Immunology, 2008, 102, 268-273.	1.1	16
78	Delayed Contraction of the CD8+ T Cell Response toward Lymphocytic Choriomeningitis Virus Infection in Mice Lacking Serglycin. Journal of Immunology, 2008, 181, 1043-1051.	0.4	28
79	TCR Down-Regulation Controls Virus-Specific CD8+ T Cell Responses. Journal of Immunology, 2008, 181, 7786-7799.	0.4	15
80	MHC Class II-Associated Invariant Chain Linkage of Antigen Dramatically Improves Cell-Mediated Immunity Induced by Adenovirus Vaccines. Journal of Immunology, 2008, 180, 3339-3346.	0.4	82
81	TLR2 and TLR9 Synergistically Control Herpes Simplex Virus Infection in the Brain. Journal of Immunology, 2008, 181, 8604-8612.	0.4	157
82	An Important Role for Type III Interferon (IFN-λ/IL-28) in TLR-Induced Antiviral Activity. Journal of Immunology, 2008, 180, 2474-2485.	0.4	387
83	Agonistic Anti-CD40 Antibody Profoundly Suppresses the Immune Response to Infection with Lymphocytic Choriomeningitis Virus. Journal of Immunology, 2007, 178, 1662-1670.	0.4	36
84	Rapid and sustained CD4+ T-cell-independent immunity from adenovirus-encoded vaccine antigens. Journal of General Virology, 2007, 88, 1708-1716.	1.3	29
85	CCR5 and CXCR3 Are Dispensable for Liver Infiltration, but CCR5 Protects against Virus-Induced T-Cell-Mediated Hepatic Steatosis. Journal of Virology, 2007, 81, 10101-10112.	1.5	12
86	Vaccination with IL-6 analogues induces autoantibodies to IL-6 and influences experimentally induced inflammation. International Immunopharmacology, 2007, 7, 1704-1713.	1.7	14
87	Virusâ€based immunotherapy of cancer: what do we know and where are we going?. Apmis, 2007, 115, 1177-1193.	0.9	4
88	Lambda Interferon (IFN-λ), a Type III IFN, Is Induced by Viruses and IFNs and Displays Potent Antiviral Activity against Select Virus Infections In Vivo. Journal of Virology, 2006, 80, 4501-4509.	1.5	536
89	Interleukin-21 mRNA expression during virus infections. Cytokine, 2006, 33, 41-45.	1.4	27
90	Role of Very Late Antigen-1 in T-cell-Mediated Immunity to Systemic Viral Infection. Scandinavian Journal of Immunology, 2006, 63, 290-298.	1.3	2

#	Article	IF	CITATIONS
91	Functional epistasis on a common MHC haplotype associated with multiple sclerosis. Nature, 2006, 443, 574-577.	13.7	187
92	CXC chemokine receptor 3 expression increases the disease-inducing potential of CD4+ CD25â^' T cells in adoptive transfer colitis. Inflammatory Bowel Diseases, 2006, 12, 374-381.	0.9	20
93	MEK kinase 1 is a negative regulator of virus-specific CD8+ T cells. European Journal of Immunology, 2006, 36, 2076-2084.	1.6	14
94	CXCL10 Is the Key Ligand for CXCR3 on CD8+ Effector T Cells Involved in Immune Surveillance of the Lymphocytic Choriomeningitis Virus-Infected Central Nervous System. Journal of Immunology, 2006, 176, 4235-4243.	0.4	129
95	Perforin-Deficient CD8 + T Cells Mediate Fatal Lymphocytic Choriomeningitis despite Impaired Cytokine Production. Journal of Virology, 2006, 80, 1222-1230.	1.5	26
96	Opposing Effects of CXCR3 and CCR5 Deficiency on CD8+ T Cell-Mediated Inflammation in the Central Nervous System of Virus-Infected Mice. Journal of Immunology, 2005, 175, 1767-1775.	0.4	47
97	Impaired Virus Control and Severe CD8 + T-Cell-Mediated Immunopathology in Chimeric Mice Deficient in Gamma Interferon Receptor Expression on both Parenchymal and Hematopoietic Cells. Journal of Virology, 2005, 79, 10073-10076.	1.5	5
98	Effect of the CTL proliferation program on virus dynamics. International Immunology, 2005, 17, 1269-1276.	1.8	34
99	Does programmed CTL proliferation optimize virus control?. Trends in Immunology, 2005, 26, 305-310.	2.9	20
100	Single-Epitope DNA Vaccination Prevents Exhaustion and Facilitates a Broad Antiviral CD8+T Cell Response during Chronic Viral Infection. Journal of Immunology, 2004, 173, 6284-6293.	0.4	16
101	Cene-gun DNA vaccination aggravates respiratory syncytial virus-induced pneumonitis. Journal of General Virology, 2004, 85, 3017-3026.	1.3	19
102	Efficient T-Cell Surveillance of the CNS Requires Expression of the CXC Chemokine Receptor 3. Journal of Neuroscience, 2004, 24, 4849-4858.	1.7	88
103	Cytokine production by virus-specific CD8+ T cells varies with activation state and localization, but not with TCR avidity. Journal of General Virology, 2004, 85, 1703-1712.	1.3	23
104	Knocking out IL-6 by vaccination. European Journal of Immunology, 2004, 34, 291-300.	1.6	15
105	Perforin and IFN-Î ³ do not significantly regulate the virus-specific CD8+ T?cell response in the absence of antiviral effector activity. European Journal of Immunology, 2004, 34, 1389-1394.	1.6	17
106	Incomplete effector/memory differentiation of antigen-primed CD8+ T cells in gene gun DNA-vaccinated mice. European Journal of Immunology, 2003, 33, 1941-1948.	1.6	18
107	Regulation of T cell migration during viral infection: role of adhesion molecules and chemokines. Immunology Letters, 2003, 85, 119-127.	1.1	43
108	Deficient CD4+T Cell Priming and Regression of CD8+T Cell Functionality in Virus-Infected Mice Lacking a Normal B Cell Compartment. Journal of Immunology, 2003, 171, 4733-4741.	0.4	41

Allan Randrup Thomsen

#	Article	IF	CITATIONS
109	The Virus-Encoded Chemokine vMIP-II Inhibits Virus-Induced Tc1-Driven Inflammation. Journal of Virology, 2003, 77, 7393-7400.	1.5	32
110	Role of Macrophage Inflammatory Protein-1α in T-Cell-Mediated Immunity to Viral Infection. Journal of Virology, 2003, 77, 12378-12384.	1.5	10
111	Expression and Functional Importance of Collagen-Binding Integrins, α1β1 and α2β1, on Virus-Activated T Cells. Journal of Immunology, 2003, 171, 2804-2811.	0.4	44
112	Role of CD28 co-stimulation in generation and maintenance of virus-specific T cells. International Immunology, 2002, 14, 701-711.	1.8	38
113	The role of CC chemokine receptor 5 in antiviral immunity. Blood, 2002, 99, 1237-1245.	0.6	80
114	The importance of lytic and nonlytic immune responses in viral infections. Trends in Immunology, 2002, 23, 194-200.	2.9	137
115	High numbers of IL-2-producing CD8+ T cells during viral infection: correlation with stable memory development. Journal of General Virology, 2002, 83, 2123-2133.	1.3	55
116	CD11b expression as a marker to distinguish between recently activated effector CD8+ T cells and memory cells. International Immunology, 2001, 13, 593-600.	1.8	83
117	Depletion of CD4+ T Cells Precipitates Immunopathology in Immunodeficient Mice Infected with a Noncytocidal Virus. Journal of Immunology, 2001, 166, 3384-3391.	0.4	23
118	Viral Infection Causes Rapid Sensitization to Lipopolysaccharide: Central Role of IFN-αβ. Journal of Immunology, 2001, 166, 982-988.	0.4	63
119	CCR2+ and CCR5+ CD8+ T cells increase during viral infection and migrate to sites of infection. European Journal of Immunology, 2000, 30, 1797-1806.	1.6	91
120	Cytokine vaccination: neutralising IL-1α autoantibodies induced by immunisation with homologous IL-1α. Journal of Immunological Methods, 2000, 236, 1-8.	0.6	19
121	Migration of activated CD8+ T lymphocytes to sites of viral infection does not require endothelial selectins. Blood, 2000, 95, 1362-1369.	0.6	24
122	Persistent Virus Infection despite Chronic Cytotoxic T-Lymphocyte Activation in Gamma Interferon-Deficient Mice Infected with Lymphocytic Choriomeningitis Virus. Journal of Virology, 2000, 74, 10304-10311.	1.5	124
123	Role of CD40 Ligand and CD28 in Induction and Maintenance of Antiviral CD8+ Effector T Cell Responses. Journal of Immunology, 2000, 164, 3689-3697.	0.4	111
124	A new theory of cytotoxic T–lymphocyte memory: implications for HIV treatment. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 329-343.	1.8	76
125	Host factors influencing viral persistence. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 1031-1041.	1.8	24
126	Virus-induced non-specific signals cause cell cycle progression of primed CD8+ T cells but do not induce cell differentiation. International Immunology, 1999, 11, 1463-1473.	1.8	30

#	Article	IF	CITATIONS
127	CD4+ T cell-mediated protection against a lethal outcome of systemic infection with vesicular stomatitis virus requires CD40 ligand expression, but not IFN-γ or IL-4. International Immunology, 1999, 11, 2035-2042.	1.8	16
128	Role of interferon-γ in the pathogenesis of LCMV-induced meningitis: unimpaired leucocyte recruitment, but deficient macrophage activation in interferon-γ knock-out mice. Journal of Neuroimmunology, 1998, 86, 202-212.	1.1	38
129	Sensitization to Lipopolysaccharide in Mice with Asymptomatic Viral Infection: Role of T Cellâ€Dependent Production of Interferon–γ. Journal of Infectious Diseases, 1997, 176, 151-157.	1.9	57
130	Cooperation of B cells and T cells is required for survival of mice infected with vesicular stomatitis virus. International Immunology, 1997, 9, 1757-1766.	1.8	82
131	Characterization of virus-primed CD8+ T cells with a type 1 cytokine profile. International Immunology, 1996, 8, 1453-1461.	1.8	36
132	Virus-induced polyclonal T cell activation is followed by apoptosis: partitioning of CD8+ T cells based on α4 integrin expression. International Immunology, 1996, 8, 707-715.	1.8	29
133	Lymphocytic Choriomeningitis Virus Infection is Associated with Long-Standing Perturbation of LFA-1 Expression on CD8+ T Cells. Scandinavian Journal of Immunology, 1995, 42, 110-118.	1.3	56
134	Virus-activated T cells regulate expression of adhesion molecules on endothelial cells in sites of infection. Journal of Neuroimmunology, 1995, 62, 35-42.	1.1	48
135	The Role of CD4+ T Cells in Cell-Mediated Immunity to LCM V: Studies in MHC Class I and Class II Deficient Mice. Scandinavian Journal of Immunology, 1994, 40, 373-382.	1.3	71
136	Analysis of the Capacity to Produce IL-3 in Murine AIDS. Scandinavian Journal of Immunology, 1994, 40, 410-414.	1.3	0
137	Breakdown of blood-brain barrier function in the murine lymphocytic choriomeningitis virus infection mediated by virus-specific CD8+ T cells. Journal of Neuroimmunology, 1991, 31, 155-163.	1.1	42
138	Class I gene regulation of haplotype preference may influence antiviral immunity in vivo. Cellular Immunology, 1989, 122, 365-376.	1.4	7
139	High-Dose Survival in the Lymphocytic Choriomeningitis Virus Infection Is Accompanied by Suppressed DTH but Unaffected T-Cell Cytotoxicity. Scandinavian Journal of Immunology, 1985, 21, 81-91.	1.3	21
140	Fatal Meningitis following Lymphocytic Choriomeningitis Virus Infection Reflects Delayed-Type Hypersensitivity Rather than Cytotoxicity. Scandinavian Journal of Immunology, 1983, 17, 139-145.	1.3	26
141	Virus Elimination in Acute Lymphocytic Choriomeningitis Virus Infection Correlation with Virus-Specific Delayed-Type Hypersensitivity rather than Cytotoxicity. Scandinavian Journal of Immunology, 1983, 17, 489-495.	1.3	24
142	Studies on the Role of Mononuclear Phagocytes in Resistance to Acute Lymphocytic Choriomeningitis Virus Infection. Scandinavian Journal of Immunology, 1983, 18, 271-277.	1.3	18
143	CONCANAVALIN Aâ€INDUCED ACTIVATION OF LYMPHOCYTIC CHORIOMENINGITIS VIRUS MEMORY LYMPHOCYTES INTO SPECIFICALLY CYTOTOXIC T CELLS. Acta Pathologica Et Microbiologica Scandinavica Section C, Immunology, 1977, 85C, 483-486.	0.0	3