Alf Mews

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/354094/publications.pdf

Version: 2024-02-01

		136950	66911
81	6,097	32	78
papers	citations	h-index	g-index
85	85	85	9646
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Controlled Growth of Gold Nanoparticles on Covellite Copper Sulfide Nanoplatelets for the Formation of Plate–Satellite Hybrid Structures. Chemistry of Materials, 2022, 34, 1157-1166.	6.7	7
2	Encapsulation of Gold Nanoparticles into Redesigned Ferritin Nanocages for the Assembly of Binary Superlattices Composed of Fluorophores and Gold Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2022, 14, 10656-10668.	8.0	11
3	Role of Magnetic Coupling in Photoluminescence Kinetics of Mn ²⁺ -Doped ZnS Nanoplatelets. ACS Applied Materials & Samp; Interfaces, 2022, 14, 18806-18815.	8.0	8
4	Superionic phase transition in individual silver selenide nanowires. Nanoscale, 2021, 13, 8017-8023.	5 . 6	4
5	Four-Fold Multi-Modal X-ray Microscopy Measurements of a Cu(In,Ga)Se2 Solar Cell. Materials, 2021, 14, 228.	2.9	12
6	Determination of the Wurtzite and Zincblende Fractions in II–VI Semiconductor Nanowires. Chemistry of Materials, 2021, 33, 1061-1069.	6.7	7
7	Impact of Ligands on Structural and Optical Properties of Ag ₂₉ Nanoclusters. Journal of the American Chemical Society, 2021, 143, 9405-9414.	13.7	60
8	Colloidal Manganese-Doped ZnS Nanoplatelets and Their Optical Properties. Chemistry of Materials, 2021, 33, 275-284.	6.7	36
9	Fabrication of SnS nanowalls <i>via</i> pulsed plasma-enhanced chemical vapor deposition using a metal–organic single-source precursor. Journal of Materials Chemistry C, 2019, 7, 10098-10110.	5 . 5	6
10	Fluorescence Quantum Yield and Single-Particle Emission of CdSe Dot/CdS Rod Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 24338-24346.	3.1	10
11	Nanoscience and Nanotechnology at the Centennial of UniversitäHamburg. ACS Nano, 2019, 13, 1-3.	14.6	1
12	Influence of Interface-Driven Strain on the Spectral Diffusion Properties of Core/Shell CdSe/CdS Dot/Rod Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 5099-5109.	3.1	5
13	Ligand density on nanoparticles: A parameter with critical impact on nanomedicine. Advanced Drug Delivery Reviews, 2019, 143, 22-36.	13.7	124
14	Monitoring the death of single BaF3 cells under plasmonic photothermal heating induced by ultrasmall gold nanorods. Journal of Materials Chemistry B, 2019, 7, 3582-3589.	5.8	3
15	Electrically tunable quantum emitters in an ultrathin graphene–hexagonal boron nitride van der Waals heterostructure. Applied Physics Letters, 2019, 114, .	3.3	23
16	Nanocrystal Aerogels with Coupled or Decoupled Building Blocks. Journal of Physical Chemistry Letters, 2019, 10, 7804-7810.	4.6	16
17	Fluorescent Metalâ€"Semiconductor Hybrid Structures by Ultrasound-Assisted in Situ Growth of Gold Nanoparticles on Silica-Coated CdSe-Dot/CdS-Rod Nanocrystals. Chemistry of Materials, 2019, 31, 224-232.	6.7	6
18	Hexagonally Shaped Two-Dimensional Tin(II)sulfide Nanosheets: Growth Model and Controlled Structure Formation. Journal of Physical Chemistry C, 2018, 122, 5784-5795.	3.1	11

#	Article	IF	CITATIONS
19	Laser-induced charge separation in organic nanofibers: A joint experimental and theoretical investigation. Organic Electronics, 2018, 53, 20-25.	2.6	1
20	Specific binding and internalization: an investigation of fluorescent aptamer-gold nanoclusters and cells with fluorescence lifetime imaging microscopy. Nanoscale, 2018, 10, 20453-20461.	5.6	17
21	Fabrication of Ag ₂ S/CdS Heterostructured Nanosheets via Self-Limited Cation Exchange. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1295-1305.	2.8	4
22	Ultrathin and Highly Passivating Silica Shells for Luminescent and Water-Soluble CdSe/CdS Nanorods. Langmuir, 2017, 33, 5253-5260.	3.5	11
23	Size dependent targeted delivery of gold nanoparticles modified with the IL-6R-specific aptamer AIR-3A to IL-6R-carrying cells. Nanoscale, 2017, 9, 14486-14498.	5.6	19
24	Surface Charges on CdSe-Dot/CdS-Rod Nanocrystals: Measuring and Modeling the Diffusion of Exciton-Fluorescence Rates and Energies. ACS Nano, 2017, 11, 12185-12192.	14.6	10
25	Highly Efficient Fuel Cell Electrodes from Few-Layer Graphene Sheets and Electrochemically Deposited Palladium Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 7476-7481.	3.1	15
26	Investigations of ion transport through nanoscale polymer membranes by fluorescence quenching of CdSe/CdS quantum dot/quantum rods. Nanoscale, 2016, 8, 7402-7407.	5.6	11
27	Solution-Grown Nanowire Devices for Sensitive and Fast Photodetection. ACS Applied Materials & Samp; Interfaces, 2015, 7, 12184-12192.	8.0	9
28	Synthesis of Carbon Nanowalls and Few-Layer Graphene Sheets on Transparent Conductive Substrates. Zeitschrift Fur Physikalische Chemie, 2015, 229, 301-316.	2.8	15
29	Congratulations to Horst Weller. Zeitschrift Fur Physikalische Chemie, 2015, 229, 1-2.	2.8	4
30	Insight into Strain Effects on Band Alignment Shifts, Carrier Localization and Recombination Kinetics in CdTe/CdS Core/Shell Quantum Dots. Journal of the American Chemical Society, 2015, 137, 2073-2084.	13.7	81
31	Organic Molecular Films as Light-Emitting and Light-Confining Material in Rolled-Up AllnP Semiconductor Microtube Resonators. ACS Photonics, 2015, 2, 1532-1538.	6.6	7
32	A Universal Approach to Ultrasmall Magnetoâ€Fluorescent Nanohybrids. Angewandte Chemie - International Edition, 2015, 54, 12468-12471.	13.8	26
33	Quantum-Confined Emission and Fluorescence Blinking of Individual Exciton Complexes in CdSe Nanowires. Nano Letters, 2014, 14, 6655-6659.	9.1	13
34	Fluorescence spectroscopy of individual semiconductor nanoparticles in different ethylene glycols. Physical Chemistry Chemical Physics, 2014, 16, 10444-10455.	2.8	7
35	Determination of Electronic Energy Levels in Type-II CdTe-Core/CdSe-Shell and CdSe-Core/CdTe-Shell Nanocrystals by Cyclic Voltammetry and Optical Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 16698-16708.	3.1	42
36	Controlled Electrodeposition of Bismuth Nanocatalysts for the Solution–Liquid–Solid Synthesis of CdSe Nanowires on Transparent Conductive Substrates. Journal of the American Chemical Society, 2013, 135, 18520-18527.	13.7	27

#	Article	IF	Citations
37	Charge separation in CdSe/CdTe hetero-nanowires measured by electrostatic force microscopy. Applied Physics Letters, 2012, 100, .	3.3	9
38	Tipâ€Induced Charging of Free Standing Semiconductor Nanowires and Carbon Nanotubes. Israel Journal of Chemistry, 2012, 52, 1073-1080.	2.3	0
39	Vertically Oriented Carbon Nanostructures and Their Application Potential for Polymer-Based Solar Cells. Journal of Physical Chemistry C, 2012, 116, 412-419.	3.1	13
40	High-Resolution Photocurrent Mapping of Carbon Nanostructures. ACS Nano, 2012, 6, 5752-5756.	14.6	14
41	Photoluminescence of Individual Au/CdSe Nanocrystal Complexes with Variable Interparticle Distances. Journal of Physical Chemistry Letters, 2011, 2, 2466-2471.	4.6	48
42	Diameter Scaling of the Optical Band Gap in Individual CdSe Nanowires. ACS Nano, 2011, 5, 7920-7927.	14.6	36
43	Laser-Induced Charge Separation in CdSe Nanowires. Nano Letters, 2011, 11, 2672-2677.	9.1	57
44	Solution–Liquid–Solid Synthesis of Semiconductor Nanowires Using Clusters as Singleâ€6ource Precursors. Small, 2011, 7, 2464-2468.	10.0	17
45	Optical Imaging of CdSe Nanowires with Nanoscale Resolution. Angewandte Chemie - International Edition, 2011, 50, 11536-11538.	13.8	36
46	Fluorescence Modulation of Single CdSe Nanowires by Charge Injection through the Tip of an Atomic-Force Microscope. Physical Review Letters, 2011, 107, 137403.	7.8	14
47	Synthesis and Characterization of Colloidal Core–Shell Semiconductor Nanowires. European Journal of Inorganic Chemistry, 2010, 2010, 4325-4331.	2.0	35
48	Semiconductor Nanocrystals with Adjustable Hole Acceptors: Tuning the Fluorescence Intensity by Metal–Ion Binding. Angewandte Chemie - International Edition, 2010, 49, 6865-6868.	13.8	38
49	Oneâ€Dimensional Heterostructures of Singleâ€Walled Carbon Nanotubes and CdSe Nanowires. Small, 2010, 6, 376-380.	10.0	17
50	Fluorescence Enhancement, Blinking Suppression, and Gray States of Individual Semiconductor Nanocrystals Close to Gold Nanoparticles. Nano Letters, 2010, 10, 4166-4174.	9.1	113
51	Optical Modes Excited by Evanescent-Wave-Coupled PbS Nanocrystals in Semiconductor Microtube Bottle Resonators. Nano Letters, 2010, 10, 627-631.	9.1	38
52	Controlled Synthesis of CdSe Nanowires by Solution–Liquid–Solid Method. Advanced Functional Materials, 2009, 19, 3650-3661.	14.9	90
53	Xâ€ray investigation of CdSe nanowires. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1752-1756.	1.8	17
54	Formation and Function of Bismuth Nanocatalysts for the Solution–Liquid–Solid Synthesis of CdSe Nanowires. Small, 2008, 4, 1698-1702.	10.0	64

#	Article	IF	Citations
55	Surface Enhanced Raman Scattering of Carbon Nanotubes Decorated by Individual Fluorescent Gold Particles. Journal of Physical Chemistry C, 2008, 112, 391-396.	3.1	59
56	Raman properties of gold nanoparticle-decorated individual carbon nanotubes. Applied Physics Letters, 2007, 90, 173109.	3.3	31
57	Surface Chemistry of Semiconductor Nanocrystals. Zeitschrift Fur Physikalische Chemie, 2007, 221, 295-306.	2.8	6
58	Electronicâ∈Bandâ∈Structure Mapping of Nanotube Transistors by Scanning Photocurrent Microscopy. Small, 2007, 3, 2038-2042.	10.0	40
59	A bright outlook for quantum dots. Nature Photonics, 2007, 1, 683-684.	31.4	14
60	Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets. Nano Letters, 2007, 7, 3499-3503.	9.1	2,177
61	Synthesis and Characterization of Highly Luminescent CdSeâ^Core CdS/Zn0.5Cd0.5S/ZnS Multishell Nanocrystals. Journal of the American Chemical Society, 2005, 127, 7480-7488.	13.7	857
62	CdSe/ZnS Nanocrystals with Dye-Functionalized Polymer Ligands Containing Many Anchor Groups. Angewandte Chemie - International Edition, 2005, 44, 2437-2440.	13.8	79
63	Photocurrent Imaging of Charge Transport Barriers in Carbon Nanotube Devices. Nano Letters, 2005, 5, 507-510.	9.1	99
64	Photoelectronic transport imaging of individual semiconducting carbon nanotubes. Applied Physics Letters, 2004, 84, 2400-2402.	3.3	114
65	Electroluminescence from isolated CdSeâ^•ZnS quantum dots in multilayered light-emitting diodes. Journal of Applied Physics, 2004, 96, 3206-3210.	2.5	144
66	Fluorescence Anisotropy and Crystal Structure of Individual Semiconductor Nanocrystalsâ€. Journal of Physical Chemistry B, 2003, 107, 7463-7471.	2.6	63
67	Raman Imaging and Spectroscopy of Heterogeneous Individual Carbon Nanotubes. Journal of Physical Chemistry B, 2003, 107, 8742-8745.	2.6	46
68	Semiconductor Nanocrystals with Multifunctional Polymer Ligands. Journal of the American Chemical Society, 2003, 125, 320-321.	13.7	141
69	Fluorescence spectroscopy and transmission electron microscopy of the same isolated semiconductor nanocrystals. Applied Physics Letters, 2002, 81, 1116-1118.	3.3	33
70	Theoretical Study of Structure and Raman Spectra for Models of Carbon Nanotubes in Their Pristine and Oxidized Forms. Journal of Physical Chemistry A, 2002, 106, 11973-11980.	2.5	34
71	Diameter-Dependent Combination Modes in Individual Single-Walled Carbon Nanotubes. Nano Letters, 2002, 2, 823-826.	9.1	19
72	Combination of Confocal Raman Spectroscopy and Electron Microscopy on the Same Individual Bundles of Single-Walled Carbon Nanotubes. Nano Letters, 2002, 2, 1209-1213.	9.1	7

ALF MEWS

#	Article	IF	CITATIONS
73	Fluorescence Decay Time of Single Semiconductor Nanocrystals. Physical Review Letters, 2002, 88, 137401.	7.8	416
74	Supramolecular Complexes from CdSe Nanocrystals and Organic Fluorophors. Langmuir, 2001, 17, 2861-2865.	3.5	235
75	Raman investigation of single oxidized carbon nanotubes. Israel Journal of Chemistry, 2001, 41, 15-22.	2.3	8
76	Dynamics of exciton localization in CdS/HgS quantum-dot quantum wells. Physical Review B, 1999, 59, 4973-4979.	3.2	29
77	Single-dot spectroscopy of CdS nanocrystals and CdS/HgS heterostructures. Physical Review B, 1999, 60, 1921-1927.	3.2	58
78	In Situ X-Ray Scattering Study on the Formation of CsPbBr3 Perovskite Nanocrystals., 0,,.		0
79	Synthesis and Electrical Properties of Photoactive Two Dimensional SnS Nanosheets., 0,,.		0
80	Synthesis and Electrical Properties of Photoactive Two Dimensional SnS Nanosheets. , 0 , , .		0
81	Deposition of triazine-based graphitic carbon nitride <i>via</i> plasma-induced polymerisation of melamine. Journal of Materials Chemistry A, 0, , .	10.3	6