List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3540775/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methodological Guidelines to Study Extracellular Vesicles. Circulation Research, 2017, 120, 1632-1648.	2.0	728
2	Transcriptional and Post-transcriptional Gene Regulation by Long Non-coding RNA. Genomics, Proteomics and Bioinformatics, 2017, 15, 177-186.	3.0	661
3	Deregulation of microRNA-503 Contributes to Diabetes Mellitus–Induced Impairment of Endothelial Function and Reparative Angiogenesis After Limb Ischemia. Circulation, 2011, 123, 282-291.	1.6	374
4	Transplantation of Human Pericyte Progenitor Cells Improves the Repair of Infarcted Heart Through Activation of an Angiogenic Program Involving Micro-RNA-132. Circulation Research, 2011, 109, 894-906.	2.0	332
5	Human Adult Vena Saphena Contains Perivascular Progenitor Cells Endowed With Clonogenic and Proangiogenic Potential. Circulation, 2010, 121, 1735-1745.	1.6	277
6	Nerve Growth Factor Promotes Angiogenesis and Arteriogenesis in Ischemic Hindlimbs. Circulation, 2002, 106, 2257-2262.	1.6	241
7	Human CD133 ⁺ Progenitor Cells Promote the Healing of Diabetic Ischemic Ulcers by Paracrine Stimulation of Angiogenesis and Activation of Wnt Signaling. Circulation Research, 2009, 104, 1095-1102.	2.0	234
8	Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nature Reviews Cardiology, 2020, 17, 685-697.	6.1	228
9	Role of microRNAs in diabetes and its cardiovascular complications. Cardiovascular Research, 2012, 93, 583-593.	1.8	227
10	Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vascular Pharmacology, 2015, 71, 24-30.	1.0	211
11	Diabetes Mellitus Induces Bone Marrow Microangiopathy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 498-508.	1.1	207
12	Local Delivery of Human Tissue Kallikrein Gene Accelerates Spontaneous Angiogenesis in Mouse Model of Hindlimb Ischemia. Circulation, 2001, 103, 125-132.	1.6	186
13	MicroRNA-15a and MicroRNA-16 Impair Human Circulating Proangiogenic Cell Functions and Are Increased in the Proangiogenic Cells and Serum of Patients With Critical Limb Ischemia. Circulation Research, 2013, 112, 335-346.	2.0	180
14	Nerve Growth Factor Promotes Cardiac Repair following Myocardial Infarction. Circulation Research, 2010, 106, 1275-1284.	2.0	175
15	Dilated and Failing Cardiomyopathy in Bradykinin B2Receptor Knockout Mice. Circulation, 1999, 100, 2359-2365.	1.6	168
16	Cardiovascular Actions of Neurotrophins. Physiological Reviews, 2009, 89, 279-308.	13.1	168
17	MicroRNA regulation in angiogenesis. Vascular Pharmacology, 2011, 55, 79-86.	1.0	155
18	Human Pericardial Fluid Contains Exosomes Enriched with Cardiovascular-Expressed MicroRNAs and Promotes Therapeutic Angiogenesis. Molecular Therapy, 2017, 25, 679-693.	3.7	153

2

#	Article	IF	CITATIONS
19	The control of microvascular permeability and blood pressure by neutral endopeptidase. Nature Medicine, 1997, 3, 904-907.	15.2	151
20	Derivation of Endothelial Cells From Human Embryonic Stem Cells by Directed Differentiation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1389-1397.	1.1	147
21	Intravenous Gene Therapy With PIM-1 Via a Cardiotropic Viral Vector Halts the Progression of Diabetic Cardiomyopathy Through Promotion of Prosurvival Signaling. Circulation Research, 2011, 108, 1238-1251.	2.0	137
22	Global Remodeling of the Vascular Stem Cell Niche in Bone Marrow of Diabetic Patients. Circulation Research, 2013, 112, 510-522.	2.0	135
23	A Role for the Long Noncoding RNA SENCR in Commitment and Function of Endothelial Cells. Molecular Therapy, 2016, 24, 978-990.	3.7	133
24	Regulatory RNAs in Heart Failure. Circulation, 2020, 141, 313-328.	1.6	133
25	Adenovirus-Mediated VEGF ₁₂₁ Gene Transfer Stimulates Angiogenesis in Normoperfused Skeletal Muscle and Preserves Tissue Perfusion After Induction of Ischemia. Circulation, 2000, 102, 565-571.	1.6	130
26	Diabetes and vessel wall remodelling: from mechanistic insights to regenerative therapies. Cardiovascular Research, 2008, 78, 265-273.	1.8	127
27	Local Inhibition of MicroRNA-24 Improves Reparative Angiogenesis and Left Ventricle Remodeling and Function in Mice With Myocardial Infarction. Molecular Therapy, 2013, 21, 1390-1402.	3.7	127
28	Nerve growth factor promotes reparative angiogenesis and inhibits endothelial apoptosis in cutaneous wounds of Type 1 diabetic mice. Diabetologia, 2004, 47, 1047-1054.	2.9	124
29	Transplantation of low dose CD34 + Kdr + cells promotes vascular and muscular regeneration in ischemic limbs. FASEB Journal, 2004, 18, 1737-1739.	0.2	120
30	p75NTR-dependent activation of NF-κB regulates microRNA-503 transcription and pericyte–endothelial crosstalk in diabetes after limb ischaemia. Nature Communications, 2015, 6, 8024.	5.8	119
31	Combined Intramyocardial Delivery of Human Pericytes and Cardiac Stem Cells Additively Improves the Healing of Mouse Infarcted Hearts Through Stimulation of Vascular and Muscular Repair. Circulation Research, 2015, 116, e81-94.	2.0	116
32	Cardiovascular Phenotype of a Mouse Strain With Disruption of Bradykinin B 2 -Receptor Gene. Circulation, 1997, 96, 3570-3578.	1.6	114
33	Targeting Kinin B1Receptor for Therapeutic Neovascularization. Circulation, 2002, 105, 360-366.	1.6	113
34	Role of Kinin B 2 Receptor Signaling in the Recruitment of Circulating Progenitor Cells With Neovascularization Potential. Circulation Research, 2008, 103, 1335-1343.	2.0	108
35	Coronary Artery-Bypass-Graft Surgery Increases the Plasma Concentration of Exosomes Carrying a Cargo of Cardiac MicroRNAs: An Example of Exosome Trafficking Out of the Human Heart with Potential for Cardiac Biomarker Discovery. PLoS ONE, 2016, 11, e0154274.	1.1	107
36	Mechanisms of Disease: the tissue kallikrein–kinin system in hypertension and vascular remodeling. Nature Clinical Practice Nephrology, 2007, 3, 208-221.	2.0	106

#	Article	IF	CITATIONS
37	Acute ACE Inhibition Causes Plasma Extravasation in Mice That is Mediated by Bradykinin and Substance P. Hypertension, 1998, 31, 1299-1304.	1.3	103
38	Genetic Deletion of the p66 Shc Adaptor Protein Protects From Angiotensin II–Induced Myocardial Damage. Hypertension, 2005, 46, 433-440.	1.3	101
39	Gestational Diabetes Mellitus Impairs Fetal Endothelial Cell Functions Through a Mechanism Involving MicroRNA-101 and Histone Methyltransferase Enhancer of Zester Homolog-2. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 664-674.	1.1	100
40	Type-2 diabetes increases autophagy in the human heart through promotion of Beclin-1 mediated pathway. International Journal of Cardiology, 2016, 202, 13-20.	0.8	97
41	The Function and Therapeutic Potential of Long Non-coding RNAs in Cardiovascular Development and Disease. Molecular Therapy - Nucleic Acids, 2017, 8, 494-507.	2.3	96
42	Pluripotent stem cell differentiation into vascular cells: A novel technology with promises for vascular re(generation). , 2011, 129, 29-49.		95
43	Identification of the prosurvival activity of nerve growth factor on cardiac myocytes. Cell Death and Differentiation, 2008, 15, 299-311.	5.0	94
44	Human Fetal Aorta Contains Vascular Progenitor Cells Capable of Inducing Vasculogenesis, Angiogenesis, and Myogenesis in Vitro and in a Murine Model of Peripheral Ischemia. American Journal of Pathology, 2007, 170, 1879-1892.	1.9	93
45	Role of MicroRNAs 99b, 181a, and 181b in the Differentiation of Human Embryonic Stem Cells to Vascular Endothelial Cells. Stem Cells, 2012, 30, 643-654.	1.4	92
46	Neurotrophin p75 Receptor (p75 ^{NTR}) Promotes Endothelial Cell Apoptosis and Inhibits Angiogenesis. Circulation Research, 2008, 103, e15-26.	2.0	90
47	Role for Substance P–Based Nociceptive Signaling in Progenitor Cell Activation and Angiogenesis During Ischemia in Mice and in Human Subjects. Circulation, 2012, 125, 1774-1786.	1.6	90
48	Vitamin B1 Analog Benfotiamine Prevents Diabetes-Induced Diastolic Dysfunction and Heart Failure Through Akt/Pim-1–Mediated Survival Pathway. Circulation: Heart Failure, 2010, 3, 294-305.	1.6	88
49	MicroRNA-503 and the Extended MicroRNA-16 Family in Angiogenesis. Trends in Cardiovascular Medicine, 2011, 21, 162-166.	2.3	80
50	Prevention of Diabetes-Induced Microangiopathy by Human Tissue Kallikrein Gene Transfer. Circulation, 2002, 106, 993-999.	1.6	78
51	Benfotiamine accelerates the healing of ischaemic diabetic limbs in mice through protein kinase B/Akt-mediated potentiation of angiogenesis and inhibition of apoptosis. Diabetologia, 2006, 49, 405-420.	2.9	78
52	Involvement of Phosphoinositide 3-Kinase Î ³ in Angiogenesis and Healing of Experimental Myocardial Infarction in Mice. Circulation Research, 2010, 106, 757-768.	2.0	77
53	Adenovirus-Mediated Human Tissue Kallikrein Gene Delivery Induces Angiogenesis in Normoperfused Skeletal Muscle. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 2379-2385.	1.1	76
54	Protease-Activated Receptor-2 Stimulates Angiogenesis and Accelerates Hemodynamic Recovery in a Mouse Model of Hindlimb Ischemia. Circulation Research, 2002, 91, 346-352.	2.0	76

#	Article	IF	CITATIONS
55	Phosphoinositide 3-Kinase Î ³ Gene Knockout Impairs Postischemic Neovascularization and Endothelial Progenitor Cell Functions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 68-76.	1.1	76
56	Inhibition of Delta-Like-4–Mediated Signaling Impairs Reparative Angiogenesis After Ischemia. Circulation Research, 2010, 107, 283-293.	2.0	76
57	Rescue of Impaired Angiogenesis in Spontaneously Hypertensive Rats by Intramuscular Human Tissue Kallikrein Gene Transfer. Hypertension, 2001, 38, 136-141.	1.3	75
58	Evidence that epithelium-derived relaxing factor released by bradykinin in the guinea pig trachea is nitric oxide American Journal of Respiratory and Critical Care Medicine, 1996, 153, 918-923.	2.5	73
59	Antiangiogenesis Mediates Cisplatin-Induced Peripheral Neuropathy. Circulation, 2005, 111, 2662-2670.	1.6	73
60	Nerve growth factor supplementation reverses the impairment, induced by Type 1 diabetes, of hindlimb post-ischaemic recovery in mice. Diabetologia, 2004, 47, 1055-63.	2.9	72
61	Cardiovascular Effects of Nociceptin in Unanesthetized Mice. Hypertension, 1999, 33, 914-919.	1.3	68
62	Benfotiamine improves functional recovery of the infarcted heart via activation of pro-survival G6PD/Akt signaling pathway and modulation of neurohormonal response. Journal of Molecular and Cellular Cardiology, 2010, 49, 625-638.	0.9	66
63	Regulation of bradykinin B2 -receptor expression by oestrogen. British Journal of Pharmacology, 1997, 121, 1763-1769.	2.7	64
64	Cardiac Hypertrophy and Microvascular Deficit in Kinin B2 Receptor Knockout Mice. Hypertension, 2003, 41, 1151-1155.	1.3	64
65	Critical Role of Tissue Kallikrein in Vessel Formation and Maturation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 657-664.	1.1	64
66	Diabetes Causes Bone Marrow Endothelial Barrier Dysfunction by Activation of the RhoA–Rho-Associated Kinase Signaling Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 555-564.	1.1	64
67	Expansion and Characterization of Neonatal Cardiac Pericytes Provides a Novel Cellular Option for Tissue Engineering in Congenital Heart Disease. Journal of the American Heart Association, 2015, 4, e002043.	1.6	64
68	Concise Review: MicroRNAs as Modulators of Stem Cells and Angiogenesis. Stem Cells, 2014, 32, 1059-1066.	1.4	63
69	Copper Transport Protein Antioxidant-1 Promotes Inflammatory Neovascularization via Chaperone and Transcription Factor Function. Scientific Reports, 2015, 5, 14780.	1.6	63
70	Renovascular Hypertension in Bradykinin B ₂ -Receptor Knockout Mice. Hypertension, 1998, 32, 503-509.	1.3	62
71	Noncoding RNAs in diabetes vascular complications. Journal of Molecular and Cellular Cardiology, 2015, 89, 42-50.	0.9	61
72	Perivascular Delivery of Encapsulated Mesenchymal Stem Cells Improves Postischemic Angiogenesis Via Paracrine Activation of VEGF-A. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1872-1880.	1.1	60

#	Article	IF	CITATIONS
73	Akt/Protein Kinase B and Endothelial Nitric Oxide Synthase Mediate Muscular Neovascularization Induced by Tissue Kallikrein Gene Transfer. Circulation, 2004, 110, 1638-1644.	1.6	57
74	Neurotrophin-3 Is a Novel Angiogenic Factor Capable of Therapeutic Neovascularization in a Mouse Model of Limb Ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1143-1150.	1.1	57
75	Boosting the pentose phosphate pathway restores cardiac progenitor cell availability in diabetes. Cardiovascular Research, 2013, 97, 55-65.	1.8	57
76	Ex Vivo Molecular Rejuvenation Improves the Therapeutic Activity of Senescent Human Cardiac Stem Cells in a Mouse Model of Myocardial Infarction. Stem Cells, 2014, 32, 2373-2385.	1.4	57
77	Paracrine control of vascularization and neurogenesis by neurotrophins. British Journal of Pharmacology, 2003, 140, 614-619.	2.7	56
78	Genetically Engineered Stem Cell Therapy for Tissue Regeneration. Annals of the New York Academy of Sciences, 2004, 1015, 271-284.	1.8	55
79	EZH2 Modulates Angiogenesis In Vitro and in a Mouse Model of Limb Ischemia. Molecular Therapy, 2015, 23, 32-42.	3.7	53
80	Angiogenesis gene therapy to rescue ischaemic tissues: achievements and future directions. British Journal of Pharmacology, 2001, 133, 951-958.	2.7	51
81	Angiotensin AT1 receptor signalling modulates reparative angiogenesis induced by limb ischaemia. British Journal of Pharmacology, 2002, 135, 87-92.	2.7	51
82	Platelet lysate gel and endothelial progenitors stimulate microvascular network formation in vitro: tissue engineering implications. Scientific Reports, 2016, 6, 25326.	1.6	51
83	Prophylactic Gene Therapy With Human Tissue Kallikrein Ameliorates Limb Ischemia Recovery in Type 1 Diabetic Mice. Diabetes, 2004, 53, 1096-1103.	0.3	50
84	Tissue Kallikrein Is Essential for Invasive Capacity of Circulating Proangiogenic Cells. Circulation Research, 2011, 108, 284-293.	2.0	50
85	Robust Revascularization in Models of Limb Ischemia Using a Clinically Translatable Human Stem Cell-Derived Endothelial Cell Product. Molecular Therapy, 2018, 26, 1669-1684.	3.7	48
86	Murine models of myocardial and limb ischemia: Diagnostic end-points and relevance to clinical problems. Vascular Pharmacology, 2006, 45, 281-301.	1.0	47
87	Nitropravastatin stimulates reparative neovascularisation and improves recovery from limb Ischaemia in type-1 diabetic mice. British Journal of Pharmacology, 2007, 150, 873-882.	2.7	45
88	Apricot Melanoidins Prevent Oxidative Endothelial Cell Death by Counteracting Mitochondrial Oxidation and Membrane Depolarization. PLoS ONE, 2012, 7, e48817.	1.1	45
89	Vascular differentiation from embryonic stem cells: Novel technologies and therapeutic promises. Vascular Pharmacology, 2012, 56, 267-279.	1.0	45
90	Rapid onset of cardiomyopathy in STZ-induced female diabetic mice involves the downregulation of pro-survival Pim-1. Cardiovascular Diabetology, 2014, 13, 68.	2.7	45

#	Article	IF	CITATIONS
91	MicroRNAs in congenital heart disease. Annals of Translational Medicine, 2015, 3, 333.	0.7	45
92	Pre-emptive hypoxia-regulated HO-1 gene therapy improves post-ischaemic limb perfusion and tissue regeneration in mice. Cardiovascular Research, 2013, 97, 115-124.	1.8	44
93	WWP2 regulates pathological cardiac fibrosis by modulating SMAD2 signaling. Nature Communications, 2019, 10, 3616.	5.8	44
94	Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: from exosomes to microvesicles. Cardiovascular Research, 2023, 119, 45-63.	1.8	44
95	Role of nitric oxide synthase inhibition in the acute hypertensive response to intracerebroventricular cadmium. British Journal of Pharmacology, 1998, 123, 129-135.	2.7	43
96	Targeting kinin receptors for the treatment of tissue ischaemia. Trends in Pharmacological Sciences, 2001, 22, 478-484.	4.0	43
97	Soluble ST2 Is Regulated by p75 Neurotrophin Receptor and Predicts Mortality in Diabetic Patients With Critical Limb Ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, e149-60.	1.1	42
98	The LINC00961 transcript and its encoded micropeptide, small regulatory polypeptide of amino acid response, regulate endothelial cell function. Cardiovascular Research, 2020, 116, 1981-1994.	1.8	42
99	Bioinspired artificial exosomes based on lipid nanoparticles carrying let-7b-5p promote angiogenesis inÂvitro and inÂvivo. Molecular Therapy, 2021, 29, 2239-2252.	3.7	42
100	Exosomes: Basic Biology and Technological Advancements Suggesting Their Potential as Ischemic Heart Disease Therapeutics. Frontiers in Physiology, 2018, 9, 1159.	1.3	41
101	Blood flow and stem cells in vascular disease. Cardiovascular Research, 2013, 99, 251-259.	1.8	39
102	Reversal of Angiogenic Growth Factor Upregulation by Revascularization of Lower Limb Ischemia. Circulation, 2002, 105, 67-72.	1.6	38
103	Possible novel targets for therapeutic angiogenesis. Current Opinion in Pharmacology, 2009, 9, 102-108.	1.7	38
104	Epigenetic Profile of Human Adventitial Progenitor Cells Correlates With Therapeutic Outcomes in a Mouse Model of Limb Ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 675-688.	1.1	38
105	Transplantation of Allogeneic Pericytes Improves Myocardial Vascularization and Reduces Interstitial Fibrosis in a Swine Model of Reperfused Acute Myocardial Infarction. Journal of the American Heart Association, 2018, 7, .	1.6	38
106	Angiotensin II Type 1 Receptor Blockade Prevents Cardiac Remodeling in Bradykinin B 2 Receptor Knockout Mice. Hypertension, 2000, 35, 391-396.	1.3	37
107	Nerve Growth Factor Gene Therapy Using Adeno-Associated Viral Vectors Prevents Cardiomyopathy in Type 1 Diabetic Mice. Diabetes, 2012, 61, 229-240.	0.3	37
108	Type-2 Diabetic Leprdb/db Mice Show a Defective Microvascular Phenotype under basal conditions and an Impaired Response to Angiogenesis Gene Therapy in the setting of Limb Ischemia. Frontiers in Bioscience - Landmark, 2007, 12, 2003.	3.0	37

#	Article	IF	CITATIONS
109	Enhanced Blood Pressure Sensitivity to Deoxycorticosterone in Mice With Disruption of Bradykinin B ₂ Receptor Gene. Hypertension, 1998, 31, 1278-1283.	1.3	35
110	The bradykinin B1 receptor and the central regulation of blood pressure in spontaneously hypertensive rats. British Journal of Pharmacology, 1999, 126, 1769-1776.	2.7	35
111	Oxidative stress-dependent activation of collagen synthesis is induced in human pulmonary smooth muscle cells by sera from patients with scleroderma-associated pulmonary hypertension. Orphanet Journal of Rare Diseases, 2014, 9, 123.	1.2	35
112	Non coding RNAs in aortic aneurysmal disease. Frontiers in Genetics, 2015, 6, 125.	1.1	35
113	Synthetic microparticles conjugated with VEGF165 improve the survival of endothelial progenitor cells via microRNA-17 inhibition. Nature Communications, 2017, 8, 747.	5.8	35
114	Exosomes: From Potential Culprits to New Therapeutic Promise in the Setting of Cardiac Fibrosis. Cells, 2020, 9, 592.	1.8	35
115	miR-15a/-16 Inhibit Angiogenesis by Targeting the Tie2 Coding Sequence: Therapeutic Potential of a miR-15a/16 Decoy System in Limb Ischemia. Molecular Therapy - Nucleic Acids, 2019, 17, 49-62.	2.3	34
116	Nitric Oxide–Releasing Aspirin Derivative, NCX 4016, Promotes Reparative Angiogenesis and Prevents Apoptosis and Oxidative Stress in a Mouse Model of Peripheral Ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 2082-2087.	1.1	33
117	Sensory neuropathy hampers nociception-mediated bone marrow stem cell release in mice and patients with diabetes. Diabetologia, 2015, 58, 2653-2662.	2.9	33
118	miR-210 Enhances the Therapeutic Potential of Bone-Marrow-Derived Circulating Proangiogenic Cells in the Setting of Limb Ischemia. Molecular Therapy, 2018, 26, 1694-1705.	3.7	33
119	MicroRNAs in Postischemic Vascular Repair. Cardiology Research and Practice, 2012, 2012, 1-7.	0.5	32
120	BDNF (Brain-Derived Neurotrophic Factor) Promotes Embryonic Stem Cells Differentiation to Endothelial Cells Via a Molecular Pathway, Including MicroRNA-214, EZH2 (Enhancer of Zeste Homolog) Tj ETQq(2018 38 2117 2125	0 0 0 rgBT 1.1	/Overlock 10
121	Endogenous Nitric Oxide Inhibits Bronchoconstriction Induced by Cold-Air Inhalation in Guinea Pigs. American Journal of Respiratory and Critical Care Medicine, 1998, 157, 547-552.	2.5	31
122	Regulation of Vascular Endothelium Inflammatory Signalling by Shear Stress. Current Vascular Pharmacology, 2016, 14, 181-186.	0.8	30
123	Evidence that tachykinins relax the guineaâ€pig trachea <i>via</i> nitric oxide release and by stimulation of a septideâ€insensitive NK ₁ receptor. British Journal of Pharmacology, 1996, 117, 1270-1276.	2.7	29
124	METTL3 Regulates Angiogenesis by Modulating let-7e-5p and miRNA-18a-5p Expression in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, e325-e337.	1.1	29
125	Role of the bradykinin B2 receptor in the maturation of blood pressure phenotype: lesson from transgenic and knockout mice. Immunopharmacology, 1999, 44, 9-13.	2.0	28
126	Adenovirus-Mediated Human Tissue Kallikrein Gene Delivery Inhibits Neointima Formation Induced by Interruption of Blood Flow in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 1459-1466.	1.1	28

#	Article	IF	CITATIONS
127	Human Tissue Kallikrein: A New Bullet for the Treatment of Ischemia. Current Pharmaceutical Design, 2003, 9, 589-597.	0.9	28
128	Aortic morphological variability in patients with bicuspid aortic valve and aortic coarctation. European Journal of Cardio-thoracic Surgery, 2019, 55, 704-713.	0.6	27
129	MicroRNAs in vascular tissue engineering and post-ischemic neovascularization. Advanced Drug Delivery Reviews, 2015, 88, 78-91.	6.6	26
130	Regional and global protective effects of tissue kallikrein gene delivery to the peri-infarct myocardium. Regenerative Medicine, 2006, 1, 235-254.	0.8	25
131	Studies of the cardiovascular effects of nociceptin and related peptides. Peptides, 2000, 21, 985-993.	1.2	22
132	Therapeutic angiogenesis: Translating experimental concepts to medically relevant goals. Vascular Pharmacology, 2006, 45, 334-339.	1.0	22
133	Blood pressure responses to acute or chronic captopril in mice with disruption of bradykinin B2-receptor gene. Journal of Hypertension, 1997, 15, 1701-1706.	0.3	21
134	Circulating Tissue Kallikrein Levels Correlate With Severity of Carotid Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1104-1110.	1.1	21
135	Altered baroreflex control of heart rate in bradykinin B2-receptor knockout mice. Immunopharmacology, 1999, 45, 21-27.	2.0	20
136	Renal phenotype of low kallikrein rats. Kidney International, 2001, 59, 2233-2242.	2.6	20
137	Exosomes Could Offer New Options to Combat the Long-Term Complications Inflicted by Gestational Diabetes Mellitus. Cells, 2020, 9, 675.	1.8	19
138	In Vivo Characterization of Endogenous Cardiovascular Extracellular Vesicles in Larval and Adult Zebrafish. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2454-2468.	1.1	19
139	miRNAs in post-ischaemic angiogenesis and vascular remodelling. Biochemical Society Transactions, 2014, 42, 1629-1636.	1.6	18
140	MWASTools: an R/bioconductor package for metabolome-wide association studies. Bioinformatics, 2018, 34, 890-892.	1.8	18
141	Peripheral blood RNA biomarkers for cardiovascular disease from bench to bedside: a position paper from the EU-CardioRNA COST action CA17129. Cardiovascular Research, 2022, 118, 3183-3197.	1.8	18
142	Changing the logic of therapeutic angiogenesis for ischemic disease. Trends in Molecular Medicine, 2005, 11, 207-216.	3.5	17
143	Genetic and dietary control of plasma tissue kallikrein secretion and urinary kinins exretion in man. Journal of Hypertension, 2008, 26, 714-720.	0.3	17
144	MicroRNA transport in cardiovascular complication of diabetes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 2111-2120.	1.2	17

9

#	Article	IF	CITATIONS
145	MicroRNA-24-3p Targets Notch and Other Vascular Morphogens to Regulate Post-ischemic Microvascular Responses in Limb Muscles. International Journal of Molecular Sciences, 2020, 21, 1733.	1.8	17
146	Cardiovascular RNA markers and artificial intelligence may improve COVID-19 outcome: a position paper from the EU-CardioRNA COST Action CA17129. Cardiovascular Research, 2021, 117, 1823-1840.	1.8	17
147	Diagnostic tools for the study of vascular cognitive dysfunction in hypertension and antihypertensive drug research. , 2006, 109, 274-283.		16
148	Human fetal aorta-derived vascular progenitor cells: identification and potential application in ischemic diseases. Cytotechnology, 2008, 58, 43-47.	0.7	16
149	The Biology of Neurotrophins: Cardiovascular Function. Handbook of Experimental Pharmacology, 2014, 220, 309-328.	0.9	16
150	Exosomes in Diabetic Cardiomyopathy: The Next-Generation Therapeutic Targets?. Diabetes, 2016, 65, 2829-2831.	0.3	16
151	Dissecting the transcriptome in cardiovascular disease. Cardiovascular Research, 2022, 118, 1004-1019.	1.8	16
152	Enlightening the Association between Bicuspid Aortic Valve and Aortopathy. Journal of Cardiovascular Development and Disease, 2018, 5, 21.	0.8	15
153	Remote ischaemic preconditioning in isolated aortic valve and coronary artery bypass surgery: a randomized trialâ€. European Journal of Cardio-thoracic Surgery, 2019, 55, 905-912.	0.6	15
154	Characterization of the endothelin receptor subtype mediating epithelium-derived relaxant nitric oxide release from guinea-pig trachea. British Journal of Pharmacology, 1998, 125, 963-968.	2.7	14
155	Migratory Activity of Circulating Mononuclear Cells Is Associated With Cardiovascular Mortality in Type 2 Diabetic Patients With Critical Limb Ischemia. Diabetes Care, 2014, 37, 1410-1417.	4.3	14
156	Cardiac Nerve Growth Factor Overexpression Induces Bone Marrow–derived Progenitor Cells Mobilization and Homing to the Infarcted Heart. Molecular Therapy, 2015, 23, 1854-1866.	3.7	14
157	Catalyzing Transcriptomics Research in Cardiovascular Disease: The CardioRNA COST Action CA17129. Non-coding RNA, 2019, 5, 31.	1.3	14
158	Differential activation of the epithelial and smooth muscle NK1 receptors by synthetic tachykinin agonists in guinea-pig trachea. British Journal of Pharmacology, 1997, 121, 773-781.	2.7	13
159	Levels of Human Tissue Kallikrein in the Vitreous Fluid of Patients with Severe Proliferative Diabetic Retinopathy. Ophthalmologica, 2004, 218, 260-263.	1.0	13
160	Arteriogenic therapy based on simultaneous delivery of VEGF-A and FGF4 genes improves the recovery from acute limb ischemia. Vascular Cell, 2013, 5, 13.	0.2	13
161	Modulating microRNAs in cardiac surgery patients: Novel therapeutic opportunities?. , 2017, 170, 192-204.		13
162	Nerve growth factor gene therapy improves bone marrow sensory innervation and nociceptor-mediated stem cell release in a mouse model of type 1 diabetes with limb ischaemia. Diabetologia, 2019, 62, 1297-1311.	2.9	13

#	Article	IF	CITATIONS
163	Role of calcitonin gene-related peptide and kinins in post-ischemic intestinal reperfusion. Peptides, 2001, 22, 915-922.	1.2	12
164	Ramipril improves hemodynamic recovery but not microvascular response to ischemia in spontaneously hypertensive rats. American Journal of Hypertension, 2002, 15, 410-415.	1.0	12
165	miRNAGE-34 induces cardiac damAGE. Cell Research, 2013, 23, 866-867.	5.7	12
166	Migration towards SDF-1 selects angiogenin-expressing bone marrow monocytes endowed with cardiac reparative activity in patients with previous myocardial infarction. Stem Cell Research and Therapy, 2015, 6, 53.	2.4	12
167	MicroRNAs as potential biomarkers in congenital heart surgery. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 1532-1540.e7.	0.4	12
168	Call to action for the cardiovascular side of COVID-19. European Heart Journal, 2020, 41, 1796-1797.	1.0	12
169	Leveraging non-coding RNAs to fight cardiovascular disease: the EU-CardioRNA network. European Heart Journal, 2021, 42, 4881-4883.	1.0	12
170	Participation of kinins in the captopril-induced inhibition of intimal hyperplasia caused by interruption of carotid blood flow in the mouse. British Journal of Pharmacology, 2000, 130, 1076-1082.	2.7	11
171	MicroRNAs as clinical biomarkers?. Frontiers in Genetics, 2015, 6, 240.	1.1	11
172	Pro-angiogenic approach for skeletal muscle regeneration. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130059.	1.1	11
173	In search of the best candidate for regeneration of ischemic tissues. Are embryonic/fetal stem cells more advantageous than adult counterparts?. Thrombosis and Haemostasis, 2005, 94, 738-49.	1.8	10
174	Optimisation of laboratory methods for whole transcriptomic RNA analyses in human left ventricular biopsies and blood samples of clinical relevance. PLoS ONE, 2019, 14, e0213685.	1.1	9
175	Relevance of N6-methyladenosine regulators for transcriptome: Implications for development and the cardiovascular system. Journal of Molecular and Cellular Cardiology, 2021, 160, 56-70.	0.9	9
176	Diabetes, microRNAs and exosomes: Les liaisons dangereuses. Journal of Molecular and Cellular Cardiology, 2014, 74, 196-198.	0.9	8
177	A journey from basic stem cell discovery to clinical application: the case of adventitial progenitor cells. Regenerative Medicine, 2015, 10, 39-47.	0.8	8
178	Letter to the Editor. Hypertension, 2002, 39, e29.	1.3	7
179	Diabetes-induced Epigenetic Signature in Vascular Cells. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2012, 12, 107-117.	0.6	7
180	Circulating MicroRNAs to Predict the Risk for Metabolic Diseases in the General Population?. Diabetes, 2017, 66, 565-567.	0.3	7

#	Article	IF	CITATIONS
181	NADPH-derived ROS generation drives fibrosis and endothelial-to-mesenchymal transition in systemic sclerosis: Potential cross talk with circulating miRNAs. Biomolecular Concepts, 2022, 13, 11-24.	1.0	7
182	EFFECT OF EARLY BLOCKADE OF BRADYKININ B2-RECEPTORS ON THE BLOOD PRESSURE PHENOTYPE OF NORMOTENSIVE AND SPONTANEOUSLY HYPERTENSIVE RATS. Pharmacological Research, 1997, 35, 523-526.	3.1	6
183	Enhanced notch signaling modulates unproductive revascularization in response to nitric oxideâ€angiopoietin signaling in a mouse model of peripheral ischemia. Microcirculation, 2019, 26, e12549.	1.0	6
184	Analysis of Neat Biofluids Obtained During Cardiac Surgery Using Nanoparticle Tracking Analysis: Methodological Considerations. Frontiers in Cell and Developmental Biology, 2020, 8, 367.	1.8	6
185	Switching on Reparative Angiogenesis. Circulation Research, 2007, 100, 599-601.	2.0	5
186	S100A1: A Novel and Essential Molecular Component for Postischemic Angiogenesis. Circulation Research, 2013, 112, 3-5.	2.0	5
187	Bridging Basic Science with Cardiac Surgery: The Bristol Heart Institute Experience. Frontiers in Surgery, 2015, 2, 31.	0.6	5
188	Data supporting the activation of autophagy genes in the diabetic heart. Data in Brief, 2015, 5, 269-275.	0.5	5
189	Extracellular vesicles at the crossâ€line between basic science and clinical needs. Microcirculation, 2017, 24, e12333.	1.0	4
190	Renal phenotype of low kallikrein rats. Kidney International, 2001, 59, 2233.	2.6	4
191	You can teach an old dog new tricks: angiopoietinâ€l instructs Tie2 ^{pos} myeloid cells to promote neovascularization in ischemic limbs. EMBO Molecular Medicine, 2013, 5, 802-804.	3.3	3
192	To serve and protect: a new heart patrolling and recycling role for macrophages. Cardiovascular Research, 2021, 117, e17-e20.	1.8	3
193	Can Knockout Mice Help Dissect Relevant Genes in Hypertension? Evidence and Confounding Factors. Hypertension, 1999, 34, e14-5.	1.3	2
194	Circulating MicroRNAs as New Biomarkers of Ischaemia/Reperfusion Injury during Cardiac Surgery. Cardiology, 2015, 130, 234-236.	0.6	2
195	Remote ischemic preconditioning in isolated valve intervention. A pooled meta-analysis. International Journal of Cardiology, 2021, 324, 146-151.	0.8	1
196	Combined Intramyocardial Delivery of Human Pericytes and Cardiac Stem Cells Additively Improves the Healing of Mouse Infarcted Hearts Through Stimulation of Vascular and Muscular Repair. Circulation Research, 2015, 116, .	2.0	1
197	Effect of cardioplegic arrest and reperfusion on left andÂright ventricular proteome/phosphoproteome in patients undergoing surgery for coronary or aortic valve disease. International Journal of Molecular Medicine, 2022, 49, .	1.8	1
198	The Renin-Angiotensin System, Capri 2005. High Blood Pressure and Cardiovascular Prevention, 2005, 12, 91-108.	1.0	0

#	Article	IF	CITATIONS
199	MicroRNAs in vascular biology, an introduction to the Vascular Pharmacology Special Issue on microRNAs. Vascular Pharmacology, 2011, 55, 59.	1.0	0
200	EDITORIAL [Hot Topic: Diabetes Cardiovascular Complications (Guest Editor: Costanza Emanueli)]. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2012, 12, 105-106.	0.6	0
201	MicroRNAs in Vascular Remodeling and Repair. , 2015, , 601-629.		0
202	MicroRNAs in Diabetes and Its Vascular Complications. Cardiac and Vascular Biology, 2017, , 39-59.	0.2	0
203	Epicardium-derived extracellular vesicles: a promising avenue for cardiac regeneration. Cardiovascular Research, 2021, , .	1.8	0