Karin Isler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3540340/publications.pdf

Version: 2024-02-01

		126708	155451
57	5,147	33	55
papers	citations	h-index	g-index
59	59	59	3816
all docs	docs citations	times ranked	citing authors
un doco	doco citationo	cimes ranked	orting authors

#	Article	IF	CITATIONS
1	Overall Brain Size, and Not Encephalization Quotient, Best Predicts Cognitive Ability across Non-Human Primates. Brain, Behavior and Evolution, 2007, 70, 115-124.	0.9	455
2	Energetics and the evolution of human brain size. Nature, 2011, 480, 91-93.	13.7	395
3	The Expensive Brain: A framework for explaining evolutionary changes in brain size. Journal of Human Evolution, 2009, 57, 392-400.	1.3	373
4	Endocranial volumes of primate species: scaling analyses using a comprehensive and reliable data set. Journal of Human Evolution, 2008, 55, 967-978.	1.3	260
5	Metabolic costs of brain size evolution. Biology Letters, 2006, 2, 557-560.	1.0	255
6	The evolutionary origin of human hyper-cooperation. Nature Communications, 2014, 5, 4747.	5 . 8	250
7	Costs of encephalization: the energy trade-off hypothesis tested on birds. Journal of Human Evolution, 2006, 51, 228-243.	1.3	184
8	Life history costs and benefits of encephalization: a comparative test using data from long-term studies of primates in the wild. Journal of Human Evolution, 2008, 54, 568-590.	1.3	178
9	Allomaternal care, life history and brain size evolution in mammals. Journal of Human Evolution, 2012, 63, 52-63.	1.3	167
10	3D-kinematics of vertical climbing in hominoids. American Journal of Physical Anthropology, 2005, 126, 66-81.	2.1	166
11	Explaining brain size variation: from social to cultural brain. Trends in Cognitive Sciences, 2012, 16, 277-284.	4.0	166
12	Comparing adult hippocampal neurogenesis in mammalian species and orders: influence of chronological age and life history stage. European Journal of Neuroscience, 2011, 34, 978-987.	1.2	159
13	How Our Ancestors Broke through the Gray Ceiling. Current Anthropology, 2012, 53, S453-S465.	0.8	136
14	Morphological analysis of the hindlimb in apes and humans. I. Muscle architecture. Journal of Anatomy, 2006, 208, 709-724.	0.9	126
15	Primate energy expenditure and life history. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1433-1437.	3.3	124
16	Effects of Seasonality on Brain Size Evolution: Evidence from Strepsirrhine Primates. American Naturalist, 2010, 176, 758-767.	1.0	108
17	LARGE BRAINS BUFFER ENERGETIC EFFECTS OF SEASONAL HABITATS IN CATARRHINE PRIMATES. Evolution; International Journal of Organic Evolution, 2012, 66, 191-199.	1.1	108
18	Re-evaluating the link between brain size and behavioural ecology in primates. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171765.	1.2	106

#	Article	IF	CITATIONS
19	Why are there so few smart mammals (but so many smart birds)?. Biology Letters, 2009, 5, 125-129.	1.0	99
20	How humans evolved large brains: Comparative evidence. Evolutionary Anthropology, 2014, 23, 65-75.	1.7	97
21	How to explain the unusually late age at skill competence among humans. Journal of Human Evolution, 2012, 63, 843-850.	1.3	85
22	Are badges of status adaptive in large complex primate groups?. Evolution and Human Behavior, 2015, 36, 398-406.	1.4	76
23	Manipulation complexity in primates coevolved with brain size and terrestriality. Scientific Reports, 2016, 6, 24528.	1.6	76
24	On Being Small: Brain Allometry in Ants. Brain, Behavior and Evolution, 2007, 69, 220-228.	0.9	74
25	Female Dominance over Males in Primates: Self-Organisation and Sexual Dimorphism. PLoS ONE, 2008, 3, e2678.	1.1	69
26	Morphological analysis of the hindlimb in apes and humans. II. Moment arms. Journal of Anatomy, 2006, 208, 725-742.	0.9	64
27	Footfall Patterns, Stride Length and Speed of Vertical Climbing in Spider Monkeys (Ateles fusciceps) Tj ETQq $1\ 1$	0.784314	· rgBT /Overlo
28	Gait parameters in vertical climbing of captive, rehabilitant and wild Sumatran orang-utans (Pongo) Tj ETQq0 0 () rgBT/Ov	erlock 10 Tf 5
29	Comparative analyses of basal rate of metabolism in mammals: data selection does matter. Biological Reviews, 2018, 93, 404-438.	4.7	48
30	Functional adaptations in the forelimb muscles of nonâ€human great apes. Journal of Anatomy, 2012, 220, 13-28.	0.9	46
31	Grooming and group cohesion in primates: implications for the evolution of language. Evolution and Human Behavior, 2013, 34, 61-68.	1.4	45
32	Inertial properties of hominoid limb segments. Journal of Anatomy, 2006, 209, 201-218.	0.9	38
33	Energetic tradeâ€offs between brain size and offspring production: Marsupials confirm a general mammalian pattern. BioEssays, 2011, 33, 173-179.	1.2	38
34	Life history, cognition and the evolution of complex foraging niches. Journal of Human Evolution, 2016, 92, 91-100.	1.3	37
35	Wild Orangutan Males Plan and Communicate Their Travel Direction One Day in Advance. PLoS ONE, 2013, 8, e74896.	1.1	37
36	Getting fat or getting help? How female mammals cope with energetic constraints on reproduction. Frontiers in Zoology, 2017, 14, 29.	0.9	35

#	Article	IF	CITATIONS
37	Habitat-specific shaping of proliferation and neuronal differentiation in adult hippocampal neurogenesis of wild rodents. Frontiers in Neuroscience, 2013, 7, 59.	1.4	34
38	Brief Communication: Seasonality of diet composition is related to brain size in New World Monkeys. American Journal of Physical Anthropology, 2014, 154, 628-632.	2.1	34
39	Hibernation constrains brain size evolution in mammals. Journal of Evolutionary Biology, 2018, 31, 1582-1588.	0.8	28
40	Gross intestinal morphometry and allometry in Carnivora. European Journal of Wildlife Research, 2016, 62, 395-405.	0.7	26
41	Being fat and smart: A comparative analysis of the fat-brain trade-off in mammals. Journal of Human Evolution, 2016, 100, 25-34.	1.3	26
42	Characteristics of vertical climbing in African apes. Senckenbergiana Lethaea, 2002, 82, 115-124.	0.3	23
43	Evolutionary Change in the Brain Size of Bats. Brain, Behavior and Evolution, 2012, 80, 15-25.	0.9	21
44	Arboreal Locomotion in Wild Black-and-White Snub-Nosed Monkeys <i>(Rhinopithecus bieti)</i>). Folia Primatologica, 2006, 77, 195-211.	0.3	20
45	Allomaternal care, brains and fertility in mammals: who cares matters. Behavioral Ecology and Sociobiology, 2019, 73, 1.	0.6	20
46	When ontogeny recapitulates phylogeny: Fixed neurodevelopmental sequence of manipulative skills among primates. Science Advances, 2020, 6, eabb4685.	4.7	19
47	Gross intestinal morphometry and allometry in primates. American Journal of Primatology, 2019, 81, e23035.	0.8	16
48	Brain Size Evolution: How Fish Pay for Being Smart. Current Biology, 2013, 23, R63-R65.	1.8	15
49	Line-Fitting by Rotation: A Nonparametric Method for Bivariate Allometric Analysis. Biometrical Journal, 2002, 44, 289.	0.6	14
50	Characteristics of vertical climbing in gibbons. Evolutionary Anthropology, 2003, 11, 49-52.	1.7	14
51	Gross intestinal morphometry and allometry in ruminants. Journal of Morphology, 2019, 280, 1254-1266.	0.6	12
52	Water-Body Use by Asian elephants in Southern Sri Lanka. Tropical Conservation Science, 2010, 3, 412-422.	0.6	10
53	Relative Brain and Brain Part Sizes Provide Only Limited Evidence that Machiavellian Behaviour in Cleaner Wrasse Is Cognitively Demanding. PLoS ONE, 2015, 10, e0135373.	1.1	10
54	Decreasing reservoir water levels improve habitat quality for Asian elephants. Mammalian Biology, 2018, 88, 130-137.	0.8	8

KARIN ISLER

#	Article	IF	CITATIONS
55	Adipose Tissue in Evolution. , 2014, , 3-13.		3
56	Metabolic Acceleration in Human Evolution. Cell Metabolism, 2016, 24, 5-6.	7.2	2
57	Assessment of phylogenetic structure in genome size – gene content correlations. Genome, 2012, 55, 391-395.	0.9	O