
Ritu Sahore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3540260/publications.pdf Version: 2024-02-01

DITH SAHODE

#	Article	IF	CITATIONS
1	A Bilayer Electrolyte Design to Enable High-Areal-Capacity Composite Cathodes in Polymer Electrolytes Based Solid-State Lithium Metal Batteries. ACS Applied Energy Materials, 2022, 5, 1409-1413.	2.5	12
2	Comparing the Purity of Rolled versus Evaporated Lithium Metal Films Using X-ray Microtomography. ACS Energy Letters, 2022, 7, 1120-1124.	8.8	11
3	Polyacrylonitrile-based electrolytes: How processing and residual solvent affect ion transport and stability. Journal of Power Sources, 2022, 527, 231165.	4.0	11
4	Performance of Different Water-Based Binder Formulations for Ni-Rich Cathodes Evaluated in LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ //Graphite Pouch Cells. Journal of the Electrochemical Society, 2022, 169, 040567.	1.3	8
5	Aqueous Ni-rich-cathode dispersions processed with phosphoric acid for lithium-ion batteries with ultra-thick electrodes. Journal of Colloid and Interface Science, 2021, 581, 635-643.	5.0	34
6	Practical Considerations for Testing Polymer Electrolytes for High-Energy Solid-State Batteries. ACS Energy Letters, 2021, 6, 2240-2247.	8.8	40
7	Testing with Thin Lithium Anode and Practical Capacities for Fast Evaluation of Polymer Electrolytes for Solid-State Batteries. ECS Meeting Abstracts, 2021, MA2021-01, 377-377.	0.0	0
8	Nanostructured ligament and fiber Al–doped Li7La3Zr2O12 scaffolds to mediate cathode-electrolyte interface chemistry. Journal of Power Sources, 2021, 513, 230551.	4.0	9
9	Low cost and scalable method for modifying surfaces of hollow particles from hydrophilic to hydrophobic. RSC Advances, 2020, 10, 31065-31069.	1.7	2
10	Towards Understanding of Cracking during Drying of Thick Aqueous-Processed LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ Cathodes. ACS Sustainable Chemistry and Engineering, 2020, 8, 3162-3169.	3.2	59
11	Revisiting the Mechanism Behind Transition-Metal Dissolution from Delithiated LiNi _x Mn _y Co _z O ₂ (NMC) Cathodes. Journal of the Electrochemical Society, 2020, 167, 020513.	1.3	44
12	Thick Aqueous Processed Cathodes Enabled By Phosphoric Acid Addition. ECS Meeting Abstracts, 2020, MA2020-01, 2735-2735.	0.0	0
13	Communication—Ligand-Dependent Electrochemical Activity for Mn ²⁺ in Lithium-Ion Electrolyte Solutions. Journal of the Electrochemical Society, 2019, 166, A2264-A2266.	1.3	6
14	Tailoring the Surface of Silicon Nanoparticles for Enhanced Chemical and Electrochemical Stability for Li-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 6176-6183.	2.5	17
15	H3PO4 treatment to enhance the electrochemical properties of Li(Ni1/3Mn1/3Co1/3)O2 and Li(Ni0.5Mn0.3Co0.2)O2 cathodes. Electrochimica Acta, 2019, 301, 8-22.	2.6	50
16	Facile in Situ Syntheses of Cathode Protective Electrolyte Additives for High Energy Density Li-Ion Cells. Chemistry of Materials, 2019, 31, 2459-2468.	3.2	11
17	Identification of Electrolyte-Soluble Organic Cross-Talk Species in a Lithium-Ion Battery via a Two-Compartment Cell. Chemistry of Materials, 2019, 31, 2884-2891.	3.2	55
18	Decomposition of Phosphorus-Containing Additives at a Charged NMC Surface through Potentiostatic Holds. Journal of the Electrochemical Society, 2019, 166, A440-A447.	1.3	14

RITU SAHORE

#	Article	IF	CITATIONS
19	Understanding the Impact of a Nonafluorinated Ether-Based Electrolyte on Li-S Battery. Journal of the Electrochemical Society, 2019, 166, A3653-A3659.	1.3	6
20	Cyclic carbonate for highly stable cycling of high voltage lithium metal batteries. Energy Storage Materials, 2019, 17, 284-292.	9.5	115
21	A Study of Factors Responsible for Cracking during Drying of Thick Aqueous-Processed NMC811 Cathodes. ECS Meeting Abstracts, 2019, , .	0.0	2
22	Chemical "Pickling―of Phosphite Additives Mitigates Impedance Rise in Li Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 9811-9824.	1.5	18
23	Methodology for understanding interactions between electrolyte additives and cathodes: a case of the tris(2,2,2-trifluoroethyl)phosphite additive. Journal of Materials Chemistry A, 2018, 6, 198-211.	5.2	24
24	Surface-Functionalized Silicon Nanoparticles as Anode Material for Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2018, 10, 44924-44931.	4.0	70
25	Preformed Anodes for High-Voltage Lithium-Ion Battery Performance: Fluorinated Electrolytes, Crosstalk, and the Origins of Impedance Rise. Journal of the Electrochemical Society, 2018, 165, A3360-A3368.	1.3	23
26	Characterization of Sulfur and Nanostructured Sulfur Battery Cathodes in Electron Microscopy Without Sublimation Artifacts. Microscopy and Microanalysis, 2017, 23, 155-162.	0.2	40
27	Tris(trimethylsilyl) Phosphite (TMSPi) and Triethyl Phosphite (TEPi) as Electrolyte Additives for Lithium Ion Batteries: Mechanistic Insights into Differences during LiNi _{0.5} Mn _{0.3} Co _{0.2} O ₂ -Graphite Full Cell Cycling. Iournal of the Electrochemical Society. 2017. 164. A1579-A1586.	1.3	59
28	Evaluating electrolyte additives for lithium-ion cells: A new FigureÂof Merit approach. Journal of Power Sources, 2017, 365, 201-209.	4.0	40
29	Additive effects in high-voltage layered-oxide cells: A statistics of mixtures approach. Journal of Power Sources, 2017, 362, 342-348.	4.0	4
30	Design Principles for Optimum Performance of Porous Carbons in Lithium–Sulfur Batteries. Advanced Energy Materials, 2016, 6, 1600134.	10.2	98
31	A combined salt–hard templating approach for synthesis of multi-modal porous carbons used for probing the simultaneous effects of porosity and electrode engineering on EDLC performance. Carbon, 2015, 87, 29-43.	5.4	29
32	High-rate lithium–sulfur batteries enabled by hierarchical porous carbons synthesized via ice templation. Journal of Power Sources, 2015, 297, 188-194.	4.0	41
33	Facile synthesis and application of a carbon foam with large mesopores. Physical Chemistry Chemical Physics, 2013, 15, 19134.	1.3	7
34	Self-suspended permanent magnetic FePt ferrofluids. Journal of Colloid and Interface Science, 2013, 407, 1-7.	5.0	12