Natalia Szynkiewicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3539916/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Symmetrical and unsymmetrical diphosphanes with diversified alkyl, aryl, and amino substituents. Dalton Transactions, 2018, 47, 16885-16894.	1.6	27
2	Activation of N ₂ O and SO ₂ by the P–B Bond System. Reversible Binding of SO ₂ by the P–O–B Geminal Frustrated Lewis Pair. Inorganic Chemistry, 2020, 59, 6332-6337.	1.9	24
3	Diaminophosphinoboranes: effective reagents for phosphinoboration of CO ₂ . RSC Advances, 2019, 9, 27749-27753.	1.7	21
4	Diphosphination of CO ₂ and CS ₂ mediated by frustrated Lewis pairs – catalytic route to phosphanyl derivatives of formic and dithioformic acid. Chemical Communications, 2019, 55, 2928-2931.	2.2	20
5	Diphosphinoboranes as Intramolecular Frustrated Lewis Pairs: P–B–P Bond Systems for the Activation of Dihydrogen, Carbon Dioxide, and Phenyl Isocyanate. Inorganic Chemistry, 2021, 60, 3794-3806.	1.9	14
6	Structural and spectroscopic analysis of a new family of monomeric diphosphinoboranes. Dalton Transactions, 2019, 48, 12482-12495.	1.6	11
7	Reactions of (Ph)tBuP-P(SiMe3)Li·3THF with [(PNP)TiCl2] and [MeNacNacTiCl2·THF]: synthesis of first PNP titanium(iv) complex with the phosphanylphosphinidene ligand [(PNP)Ti(Cl){η2-P-P(Ph)tBu}]. Dalton Transactions, 2018, 47, 9733-9741.	1.6	10
8	Molecular Structures of the Phospha-Wittig Reaction Intermediate: Initial Step in the Synthesis of Compounds with a Câ•P–P Bond as Products in the Phospha-Wittig Reaction. Organometallics, 2019, 38, 2873-2877.	1.1	8
9	Monomeric Triphosphinoboranes: Intramolecular Lewis Acid–Base Interactions between Boron and Phosphorus Atoms. Inorganic Chemistry, 2022, 61, 4361-4370.	1.9	8
10	Syntheses and Structures of Transition Metal Complexes with Phosphanylphosphinidene Chalcogenide Ligands. Inorganic Chemistry, 2019, 58, 7905-7914.	1.9	6
11	Homoleptic mono-, di-, and tetra-iron complexes featuring phosphido ligands: a synthetic, structural, and spectroscopic study. Dalton Transactions, 2020, 49, 10091-10103.	1.6	3
12	Solvent Impact on the Diversity of Products in the Reaction of Lithium Diphenylphosphide and a Ti(III) Complex Supported by a tBu2P–P(SiMe3) Ligand. Inorganic Chemistry, 2020, 59, 11305-11315.	1.9	3
13	Synthesis of compounds with C–P–P and Cî€P–P bond systems based on the phospha-Wittig reaction. Dalton Transactions, 2020, 49, 13635-13646.	1.6	3
14	The Reactivity of Phosphanylphosphinidene Complexes of Transition Metals Toward Terminal Dihaloalkanes. Inorganic Chemistry, 2020, 59, 5463-5474.	1.9	3
15	Reactivity of bulky aminophosphanes towards small molecules: Activation of dihydrogen and carbon dioxide by aminophosphane/borane frustrated Lewis pairs. Polyhedron, 2021, 194, 114930.	1.0	3
16	Reactivity study of a β-diketiminate titanium(III) complex with a phosphanylphosphido ligand towards chlorophosphanes. A new method of synthesis of β-diketiminate titanium(IV) complexes with versatile phosphanylphosphinidenes. Polyhedron, 2019, 169, 278-286.	1.0	2
17	Two complementary approaches for the synthesis and isolation of stable phosphanylphosphaalkenes. Inorganic Chemistry Frontiers, 2021, 8, 3851-3862.	3.0	2
18	Experimental and theoretical investigation of the reactivity of [(BDI*)Ti(Cl){η2-P(SiMe3)-PiPr2}] towards selected ketones. Dalton Transactions, 2021, 50, 1390-1401.	1.6	2

#	Article	IF	CITATIONS
19	Exploring the Reactivity of Unsymmetrical Diphosphanes toward Heterocumulenes: Access to Phosphanyl and Phosphoryl Derivatives of Amides, Imines, and Iminoamides. Inorganic Chemistry, 2022, 61, 9523-9532.	1.9	2
20	Sulfurization of phosphanylphosphinidene ligand: Access to phosphinothioyltrithiophosphonato platinum(II) complexes. Inorganica Chimica Acta, 2021, 523, 120413.	1.2	0
21	Activation of the Cî€P bond in phosphanylphosphaalkenes (Cî€P–P bond system) in the reaction with nucleophilic reagents: MeLi, <i>n</i> BuLi and <i>t</i> BuLi. RSC Advances, 2022, 12, 10989-10996.	1.7	0