Ingrid Herr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3539594/publications.pdf

Version: 2024-02-01

57	2,935	28	53
papers	citations	h-index	g-index
61	61	61	4263
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	UHMK1 Is a Novel Marker for Personalized Prediction of Pancreatic Cancer Prognosis. Frontiers in Oncology, 2022, 12, 834647.	1.3	5
2	Machine-Learning-Based Bibliometric Analysis of Pancreatic Cancer Research Over the Past 25 Years. Frontiers in Oncology, 2022, 12, 832385.	1.3	10
3	Toward 3D-bioprinting of an endocrine pancreas: A building-block concept for bioartificial insulin-secreting tissue. Journal of Tissue Engineering, 2022, 13, 204173142210910.	2.3	8
4	Sulforaphane Inhibits the Expression of Long Noncoding RNA H19 and Its Target APOBEC3G and Thereby Pancreatic Cancer Progression. Cancers, 2021, 13, 827.	1.7	17
5	Alpha-Lipoic Acid Prevents Side Effects of Therapeutic Nanosilver without Compromising Cytotoxicity in Experimental Pancreatic Cancer. Cancers, 2021, 13, 4770.	1.7	5
6	Therapy of pancreatic cancer with alternating electric fields: Limitations of the method. Bioelectrochemistry, 2021, 141, 107881.	2.4	3
7	Sulforaphane promotes C. elegans longevity and healthspan via DAF-16/DAF-2 insulin/IGF-1 signaling. Aging, 2021, 13, 1649-1670.	1.4	31
8	Establishment of Tumor Treating Fields Combined With Mild Hyperthermia as Novel Supporting Therapy for Pancreatic Cancer. Frontiers in Oncology, 2021, 11, 738801.	1.3	2
9	Sulforaphane Targets TRA-1/GLI Upstream of DAF-16/FOXO to Promote C. elegans Longevity and Healthspan. Frontiers in Cell and Developmental Biology, 2021, 9, 784999.	1.8	5
10	Broccoli sprout supplementation in patients with advanced pancreatic cancer is difficult despite positive effects—results from the POUDER pilot study. Investigational New Drugs, 2020, 38, 776-784.	1.2	36
11	Inhibition of miR30a-3p by sulforaphane enhances gap junction intercellular communication in pancreatic cancer. Cancer Letters, 2020, 469, 238-245.	3.2	24
12	Sulforaphane Promotes Dendritic Cell Stimulatory Capacity Through Modulation of Regulatory Molecules, JAK/STAT3- and MicroRNA-Signaling. Frontiers in Immunology, 2020, 11, 589818.	2.2	10
13	Novel Broccoli Sulforaphane-Based Analogues Inhibit the Progression of Pancreatic Cancer without Side Effects. Biomolecules, 2020, 10, 769.	1.8	9
14	Novel plant microRNAs from broccoletti sprouts do not show cross-kingdom regulation of pancreatic cancer. Oncotarget, 2020, 11, 1203-1217.	0.8	9
15	Interleukin 21 Receptor/Ligand Interaction Is Linked to Disease Progression in Pancreatic Cancer. Cells, 2019, 8, 1104.	1.8	11
16	Sulforaphane Induces miR135b-5p and Its Target Gene, RASAL2, thereby Inhibiting the Progression of Pancreatic Cancer. Molecular Therapy - Oncolytics, 2019, 14, 74-81.	2.0	34
17	MicroRNA-365a-3p inhibits c-Rel-mediated NF-κB signaling and the progression of pancreatic cancer. Cancer Letters, 2019, 452, 203-212.	3.2	28
18	Glycine protects partial liver grafts from Kupffer cell-dependent ischemia–reperfusion injury without negative effect on regeneration. Amino Acids, 2019, 51, 903-911.	1.2	5

#	Article	IF	CITATIONS
19	Simvastatin inhibits sonic hedgehog signaling and stemness features of pancreatic cancer. Cancer Letters, 2018, 426, 14-24.	3.2	27
20	Intraductal papillary mucinous neoplasm of the pancreas rapidly xenografts in chicken eggs and predicts aggressiveness. International Journal of Cancer, 2018, 142, 1440-1452.	2.3	21
21	Dexamethasone-induced inhibition of miR-132 via methylation promotes TGF-Î ² -driven progression of pancreatic cancer. International Journal of Oncology, 2018, 54, 53-64.	1.4	15
22	The natural agent 4-vinylphenol targets metastasis and stemness features in breast cancer stem-like cells. Cancer Chemotherapy and Pharmacology, 2018, 82, 185-197.	1.1	12
23	Melatonin promotes sorafenibâ€induced apoptosis through synergistic activation of <scp>JNK</scp> /câ€jun pathway in human hepatocellular carcinoma. Journal of Pineal Research, 2017, 62, e12398.	3.4	82
24	Sulforaphane sensitizes human cholangiocarcinoma to cisplatin via the downregulation of anti-apoptotic proteins. Oncology Reports, 2017, 37, 3660-3666.	1.2	13
25	microRNA-210 overexpression inhibits tumor growth and potentially reverses gemcitabine resistance in pancreatic cancer. Cancer Letters, 2017, 388, 107-117.	3.2	50
26	Dexamethasone mediates pancreatic cancer progression by glucocorticoid receptor, TGF \hat{l}^2 and JNK/AP-1. Cell Death and Disease, 2017, 8, e3064-e3064.	2.7	41
27	MiR-127 and miR-376a act as tumor suppressors by inÂvivo targeting of COA1 and PDIA6 in giant cell tumor of bone. Cancer Letters, 2017, 409, 49-55.	3.2	40
28	Establishment and Characterization of a Novel Cell Line, ASAN-PaCa, Derived From Human Adenocarcinoma Arising in Intraductal Papillary Mucinous Neoplasm of the Pancreas. Pancreas, 2016, 45, 1452-1460.	0.5	16
29	MicroRNA-101-3p reverses gemcitabine resistance by inhibition of ribonucleotide reductase M1 in pancreatic cancer. Cancer Letters, 2016, 373, 130-137.	3.2	62
30	Restoration of miR-127-3p and miR-376a-3p counteracts the neoplastic phenotype of giant cell tumor of bone derived stromal cells by targeting COA1, GLE1 and PDIA6. Cancer Letters, 2016, 371, 134-141.	3.2	27
31	Up-regulation of microRNA let-7c by quercetin inhibits pancreatic cancer progression by activation of Numbl. Oncotarget, 2016, 7, 58367-58380.	0.8	73
32	Delivery of improved oncolytic adenoviruses by mesenchymal stromal cells for elimination of tumorigenic pancreatic cancer cells. Oncotarget, 2016, 7, 9046-9059.	0.8	29
33	Engineered adenoviruses combine enhanced oncolysis with improved virus production by mesenchymal stromal carrier cells. International Journal of Cancer, 2015, 137, 978-990.	2.3	42
34	Ethical euthanasia and short-term anesthesia of the chick embryo. ALTEX: Alternatives To Animal Experimentation, 2015, 32, 143-7.	0.9	45
35	Aspirin counteracts cancer stem cell features, desmoplasia and gemcitabine resistance in pancreatic cancer. Oncotarget, 2015, 6, 9999-10015.	0.8	63
36	Inhibition of glucose turnover by 3-bromopyruvate counteracts pancreatic cancer stem cell features and sensitizes cells to gemcitabine. Oncotarget, 2014, 5, 5177-5189.	0.8	61

#	Article	IF	Citations
37	Sulforaphane, quercetin and catechins complement each other in elimination of advanced pancreatic cancer by miR-let-7 induction and K-ras inhibition. International Journal of Oncology, 2014, 45, 1391-1400.	1.4	137
38	Triptolide reverses hypoxiaâ€induced epithelial–mesenchymal transition and stemâ€like features in pancreatic cancer by NFâ€l³B downregulation. International Journal of Cancer, 2014, 134, 2489-2503.	2.3	129
39	Pilot study evaluating broccoli sprouts in advanced pancreatic cancer (POUDER trial) - study protocol for a randomized controlled trial. Trials, 2014, 15, 204.	0.7	39
40	Sulforaphane and TRAIL induce a synergistic elimination of advanced prostate cancer stem-like cells. International Journal of Oncology, 2014, 44, 1470-1480.	1.4	49
41	Establishment of hypoxia induction in an in vivo animal replacement model for experimental evaluation of pancreatic cancer. Oncology Reports, 2014, 32, 153-158.	1.2	12
42	Sulforaphane counteracts aggressiveness of pancreatic cancer driven by dysregulated Cx43-mediated gap junctional intercellular communication. Oncotarget, 2014, 5, 1621-1634.	0.8	50
43	Sulforaphane and related mustard oils in focus of cancer prevention and therapy. Wiener Medizinische Wochenschrift, 2013, 163, 80-88.	0.5	31
44	Autophagy and cell death signaling following dietary sulforaphane act independently of each other and require oxidative stress in pancreatic cancer. International Journal of Oncology, 2011, 39, 101-9.	1.4	33
45	Sulforaphane Increases Drug-mediated Cytotoxicity Toward Cancer Stem-like Cells of Pancreas and Prostate. Molecular Therapy, 2011, 19, 188-195.	3.7	196
46	Synergistic Activity of Sorafenib and Sulforaphane Abolishes Pancreatic Cancer Stem Cell Characteristics. Cancer Research, 2010, 70, 5004-5013.	0.4	196
47	Dietary polyphenol quercetin targets pancreatic cancer stem cells. International Journal of Oncology, 2010, 37, 551-61.	1.4	76
48	Dietary constituents of broccoli and other cruciferous vegetables: Implications for prevention and therapy of cancer. Cancer Treatment Reviews, 2010, 36, 377-383.	3.4	286
49	Suitability of human mesenchymal stem cells for gene therapy depends on the expansion medium. Experimental Cell Research, 2009, 315, 498-507.	1.2	45
50	Glucocorticoid-Mediated Apoptosis Resistance of Solid Tumors. Results and Problems in Cell Differentiation, 2009, 49, 191-218.	0.2	17
51	Adult stem cells in progression and therapy of hepatocellular carcinoma. International Journal of Cancer, 2007, 121, 1875-1882.	2.3	8
52	On the TRAIL to therapeutic intervention in liver disease. Hepatology, 2007, 46, 266-274.	3.6	37
53	Regulation of differential pro- and anti-apoptotic signaling by glucocorticoids. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 271-291.	2.2	96
54	New in vivo results support concerns about harmful effects of cortisone drugs in the treatment of breast cancer. Cancer Biology and Therapy, 2006, 5, 941-942.	1.5	4

Ingrid Herr

#	Article	IF	CITATIONS
55	Glucocorticoid cotreatment induces apoptosis resistance toward cancer therapy in carcinomas. Cancer Research, 2003, 63, 3112-20.	0.4	150
56	TRAIL/Apo-2-ligand-induced apoptosis in human T cells. European Journal of Immunology, 1998, 28, 143-152.	1.6	271
57	TRAIL/Apo-2-ligand-induced apoptosis in human T cells. , 1998, 28, 143.		2