Peter B Catrysse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3539581/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Subwavelength Bayer RGB color routers with perfect optical efficiency. Nanophotonics, 2022, 11, 2381-2387.	6.0	11
2	Perfect RGBâ€IR Color Routers for Subâ€Wavelength Size CMOS Image Sensor Pixels. Advanced Photonics Research, 2021, 2, 2000048.	3.6	31
3	Subambient daytime radiative cooling textile based on nanoprocessed silk. Nature Nanotechnology, 2021, 16, 1342-1348.	31.5	178
4	Perfect RGB-IR color routers for sub-wavelength size CMOS image sensor pixels. , 2021, , .		0
5	Scattering of electromagnetic waves by cylinder inside uniaxial hyperbolic medium. Optics Express, 2019, 27, 3991.	3.4	6
6	Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nature Sustainability, 2018, 1, 105-112.	23.7	370
7	Spectrally Selective Nanocomposite Textile for Outdoor Personal Cooling. Advanced Materials, 2018, 30, e1802152.	21.0	362
8	Broadband Control of Topological Nodes in Electromagnetic Fields. Physical Review Letters, 2018, 120, 193903.	7.8	3
9	Planar, Ultrathin, Subwavelength Spectral Light Separator for Efficient, Wide-Angle Spectral Imaging. ACS Photonics, 2017, 4, 525-535.	6.6	12
10	Warming up human body by nanoporous metallized polyethylene textile. Nature Communications, 2017, 8, 496.	12.8	280
11	A dual-mode textile for human body radiative heating and cooling. Science Advances, 2017, 3, e1700895.	10.3	399
12	Photonic Structure Textile Design for Localized Thermal Cooling Based on a Fiber Blending Scheme. ACS Photonics, 2016, 3, 2420-2426.	6.6	71
13	Radiative human body cooling by nanoporous polyethylene textile. Science, 2016, 353, 1019-1023.	12.6	764
14	Complete power concentration into a single waveguide in large-scale waveguide array lenses. Scientific Reports, 2015, 4, 6635.	3.3	1
15	Routing of deep-subwavelength optical beams without reflection and diffraction using infinitely anisotropic metamaterials. , 2015, , .		0
16	Integration of optical functionality for image sensing through sub-wavelength geometry design. , 2015, , .		2
17	Spectral Light Separator: The Subwavelength-size Device to Spectrally Decompose Light in an Efficient Way. , 2015, , .		1
18	Spectral light separator based on deep-subwavelength resonant apertures in a metallic film. Applied Physics Letters, 2014, 105, .	3.3	13

PETER B CATRYSSE

#	Article	IF	CITATIONS
19	Routing of Deepâ€Subwavelength Optical Beams and Images without Reflection and Diffraction Using Infinitely Anisotropic Metamaterials. Advanced Materials, 2013, 25, 194-198.	21.0	24
20	Pixel scaling in infrared focal plane arrays. Applied Optics, 2013, 52, C72.	1.8	15
21	Imaging systems and applications. Applied Optics, 2013, 52, ISA1.	1.8	2
22	Digital camera simulation. Applied Optics, 2012, 51, A80.	1.8	75
23	From Electromagnetically Induced Transparency to Superscattering with a Single Structure: A Coupled-Mode Theory for Doubly Resonant Structures. Physical Review Letters, 2012, 108, 083902.	7.8	193
24	Pixel Scaling in Infrared Focal Plane Arrays. , 2012, , .		0
25	Transverse Electromagnetic Modes in Aperture Waveguides Containing a Metamaterial with Extreme Anisotropy. Physical Review Letters, 2011, 106, 223902.	7.8	22
26	Transparent electrode designs based on optimal nano-patterning of metallic films. , 2010, , .		0
27	Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices. Nano Letters, 2010, 10, 2944-2949.	9.1	207
28	Microlens performance limits in sub-2μm pixel CMOS image sensors. Optics Express, 2010, 18, 5861.	3.4	71
29	Temporal coupled-mode theory for resonant apertures. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 1947.	2.1	76
30	Nanophotonics for Solid-State Imaging. , 2010, , .		0
31	Understanding the dispersion of coaxial plasmonic structures through a connection with the planar metal-insulator-metal geometry. Applied Physics Letters, 2009, 94, 231111.	3.3	62
32	Effects of imaging lens f-number on sub-2 Ã,µm CMOS image sensor pixel performance. Proceedings of SPIE, 2009, , .	0.8	6
33	Planar metallic nanoscale slit lenses for angle compensation. Applied Physics Letters, 2009, 95, .	3.3	64
34	Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film. Nano Letters, 2009, 9, 235-238.	9.1	463
35	Optical confinement methods for continued scaling of CMOS image sensor pixels. Optics Express, 2008, 16, 20457.	3.4	49
36	Deep-subwavelength cylindrical waveguides with extremely low cutoff frequency. , 2008, , .		2

 ${\sf Deep-subwavelength\ cylindrical\ waveguides\ with\ extremely\ low\ cutoff\ frequency.\ ,\ 2008,\ ,\ .}$ 36

3

PETER B CATRYSSE

#	Article	IF	CITATIONS
37	Curving monolithic silicon for nonplanar focal plane array applications. Applied Physics Letters, 2008, 92, .	3.3	98
38	Phonon Polariton Reflectance Spectra In a Silicon Carbide Membrane Hole Array. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
39	Near-complete transmission through subwavelength hole arrays in phonon-polaritonic thin films. Physical Review B, 2007, 75, .	3.2	45
40	Extraordinary Transmission Through A Poly-SiC Membrane with Subwavelength Hole Arrays. , 2007, , .		3
41	Beaming light into the nanoworld. Nature Physics, 2007, 3, 839-840.	16.7	3
42	Cut-Through Metal Slit Array as an Anisotropic Metamaterial Film. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 1116-1122.	2.9	51
43	Roadmap for CMOS image sensors: Moore meets Planck and Sommerfeld. , 2005, , .		42
44	Monolithic Integration of Electronics and Sub-wavelength Metal Optics in Deep Submicron CMOS Technology. Materials Research Society Symposia Proceedings, 2005, 869, 151.	0.1	5
45	Mechanism for Designing Metallic Metamaterials with a High Index of Refraction. Physical Review Letters, 2005, 94, 197401.	7.8	324
46	One-mode model for patterned metal layers inside integrated color pixels. Optics Letters, 2004, 29, 974.	3.3	49
47	Integrated color pixels in 018-µm complementary metal oxide semiconductor technology. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2003, 20, 2293.	1.5	79
48	Optical efficiency of image sensor pixels. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2002, 19, 1610.	1.5	67
49	QE reduction due to pixel vignetting in CMOS image sensors. , 2000, 3965, 420.		29