Marie-Paule Gonthier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3539481/publications.pdf

Version: 2024-02-01

25 papers 2,062 citations

471509 17 h-index 23 g-index

25 all docs

25 docs citations

25 times ranked

2939 citing authors

#	Article	IF	CITATIONS
1	Links between Insulin Resistance and Periodontal Bacteria: Insights on Molecular Players and Therapeutic Potential of Polyphenols. Biomolecules, 2022, 12, 378.	4.0	8
2	ApoA-I Nanoparticles as Curcumin Carriers for Cerebral Endothelial Cells: Improved Cytoprotective Effects against Methylglyoxal. Pharmaceuticals, 2022, 15, 347.	3.8	3
3	Antioxidant and Cytoprotective Properties of Polyphenol-Rich Extracts from Antirhea borbonica and Doratoxylon apetalum against Atherogenic Lipids in Human Endothelial Cells. Antioxidants, 2022, 11, 34.	5.1	O
4	Antioxidant Polyphenols of Antirhea borbonica Medicinal Plant and Caffeic Acid Reduce Cerebrovascular, Inflammatory and Metabolic Disorders Aggravated by High-Fat Diet-Induced Obesity in a Mouse Model of Stroke. Antioxidants, 2022, 11, 858.	5.1	17
5	Hyperglycemic Condition Causes Pro-Inflammatory and Permeability Alterations Associated with Monocyte Recruitment and Deregulated NFκB/PPARγ Pathways on Cerebral Endothelial Cells: Evidence for Polyphenols Uptake and Protective Effect. International Journal of Molecular Sciences, 2021, 22, 1385.	4.1	22
6	Caffeic Acid, One of the Major Phenolic Acids of the Medicinal Plant Antirhea borbonica, Reduces Renal Tubulointerstitial Fibrosis. Biomedicines, 2021, 9, 358.	3.2	10
7	High-Fat Diet Aggravates Cerebral Infarct, Hemorrhagic Transformation and Neuroinflammation in a Mouse Stroke Model. International Journal of Molecular Sciences, 2021, 22, 4571.	4.1	13
8	Phenolic Profile of Herbal Infusion and Polyphenol-Rich Extract from Leaves of the Medicinal Plant Antirhea borbonica: Toxicity Assay Determination in Zebrafish Embryos and Larvae. Molecules, 2020, 25, 4482.	3.8	12
9	Medicinal Plant Polyphenols Attenuate Oxidative Stress and Improve Inflammatory and Vasoactive Markers in Cerebral Endothelial Cells during Hyperglycemic Condition. Antioxidants, 2020, 9, 573.	5.1	32
10	Protective Effects of Antioxidant Polyphenols against Hyperglycemiaâ€Mediated Alterations in Cerebral Endothelial Cells and a Mouse Stroke Model. Molecular Nutrition and Food Research, 2020, 64, e1900779.	3.3	22
11	Systematic bioinformatic analysis of nutrigenomic data of flavanols in cell models of cardiometabolic disease. Food and Function, 2020, 11, 5040-5064.	4.6	13
12	Hyperglycemia modulates redox, inflammatory and vasoactive markers through specific signaling pathways in cerebral endothelial cells: Insights on insulin protective action. Free Radical Biology and Medicine, 2019, 130, 59-70.	2.9	31
13	Porphyromonas gingivalis lipopolysaccharide induces pro-inflammatory adipokine secretion and oxidative stress by regulating Toll-like receptor-mediated signaling pathways and redox enzymes in adipocytes. Molecular and Cellular Endocrinology, 2017, 446, 102-110.	3.2	62
14	Anti-inflammatory and antioxidant effects of polyphenols extracted from Antirhea borbonica medicinal plant on adipocytes exposed to Porphyromonas gingivalis and Escherichia coli lipopolysaccharides. Pharmacological Research, 2017, 119, 303-312.	7.1	44
15	<i>Curcuma longa</i> polyphenols improve insulinâ€mediated lipid accumulation and attenuate proinflammatory response of 3T3â€L1 adipose cells during oxidative stress through regulation of key adipokines and antioxidant enzymes. BioFactors, 2016, 42, 418-430.	5 . 4	27
16	Evaluation of nutritional and antioxidant properties of the tropical fruits banana, litchi, mango, papaya, passion fruit and pineapple cultivated in Réunion French Island. Food Chemistry, 2016, 212, 225-233.	8.2	119
17	Antioxidant polyphenol-rich extracts from the medicinal plants Antirhea borbonica, Doratoxylon apetalum and Gouania mauritiana protect 3T3-L1 preadipocytes against H2O2, TNFα and LPS inflammatory mediators by regulating the expression of superoxide dismutase and NF-κB genes. Journal of Inflammation, 2015, 12, 10.	3.4	71
18	Dietary polyphenols preconditioning protects 3T3-L1 preadipocytes from mitochondrial alterations induced by oxidative stress. International Journal of Biochemistry and Cell Biology, 2013, 45, 167-174.	2.8	34

#	Article	IF	Citations
19	Presence of functional TLR2 and TLR4 on human adipocytes. Histochemistry and Cell Biology, 2007, 127, 131-137.	1.7	93
20	Polyphenol levels in human urine after intake of six different polyphenol-rich beverages. British Journal of Nutrition, 2005, 94, 500-509.	2.3	150
21	Metabolism of dietary procyanidins in rats. Free Radical Biology and Medicine, 2003, 35, 837-844.	2.9	303
22	Novel liquid chromatography–electrospray ionization mass spectrometry method for the quantification in human urine of microbial aromatic acid metabolites derived from dietary polyphenols. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 789, 247-255.	2.3	50
23	Chlorogenic Acid Bioavailability Largely Depends on Its Metabolism by the Gut Microflora in Rats. Journal of Nutrition, 2003, 133, 1853-1859.	2.9	407
24	Microbial Aromatic Acid Metabolites Formed in the Gut Account for a Major Fraction of the Polyphenols Excreted in Urine of Rats Fed Red Wine Polyphenols. Journal of Nutrition, 2003, 133, 461-467.	2.9	212
25	Chocolate intake increases urinary excretion of polyphenol-derived phenolic acids in healthy human subjects. American Journal of Clinical Nutrition, 2003, 77, 912-918.	4.7	307