David B Teplow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3539444/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From reaction kinetics to dementia: A simple dimer model of Alzheimer's disease etiology. PLoS Computational Biology, 2021, 17, e1009114.	1.5	7
2	Myricetin prevents high molecular weight Aβ1-42 oligomer-induced neurotoxicity through antioxidant effects in cell membranes and mitochondria. Free Radical Biology and Medicine, 2021, 171, 232-244.	1.3	27
3	Ultrasensitive amyloid βâ€protein quantification with high dynamic range using a hybrid graphene–gold surfaceâ€enhanced Raman spectroscopy platform. Journal of Raman Spectroscopy, 2020, 51, 432-441.	1.2	8
4	Peripherally derived angiotensin converting enzyme-enhanced macrophages alleviate Alzheimer-related disease. Brain, 2020, 143, 336-358.	3.7	52
5	Self- and Cross-Seeding on α-Synuclein Fibril Growth Kinetics and Structure Observed by High-Speed Atomic Force Microscopy. ACS Nano, 2020, 14, 9979-9989.	7.3	28
6	Effects of IL-34 on Macrophage Immunological Profile in Response to Alzheimer's-Related Aβ42 Assemblies. Frontiers in Immunology, 2020, 11, 1449.	2.2	15
7	High molecular weight amyloid β 1â€42 oligomers induce neurotoxicity via plasma membrane damage. Alzheimer's and Dementia, 2020, 16, e037546.	0.4	3
8	Vitamin B12 may prevent Aβ oligomerâ€induced neurotoxicity in Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e045043.	0.4	0
9	Activated Bone Marrow-Derived Macrophages Eradicate Alzheimer's-Related Aβ42 Oligomers and Protect Synapses. Frontiers in Immunology, 2020, 11, 49.	2.2	32
10	Preface. Progress in Molecular Biology and Translational Science, 2019, 164, xiii-xvi.	0.9	0
11	High molecular weight amyloid β _{1â€42} oligomers induce neurotoxicity <i>via</i> plasma membrane damage. FASEB Journal, 2019, 33, 9220-9234.	0.2	72
12	Surface enhanced Raman spectroscopy distinguishes amyloid Î'â€protein isoforms and conformational states. Protein Science, 2018, 27, 1427-1438.	3.1	29
13	A novel role for osteopontin in macrophage-mediated amyloid-β clearance in Alzheimer's models. Brain, Behavior, and Immunity, 2018, 67, 163-180.	2.0	86
14	Preparation of Pure Populations of Amyloid β-Protein Oligomers of Defined Size. Methods in Molecular Biology, 2018, 1779, 3-12.	0.4	6
15	Using chirality to probe the conformational dynamics and assembly of intrinsically disordered amyloid proteins. Scientific Reports, 2017, 7, 12433.	1.6	37
16	Identification of key regions and residues controlling Aβ folding and assembly. Scientific Reports, 2017, 7, 12434.	1.6	20
17	Nanoscale Dynamics of Amyloid β-42 Oligomers As Revealed by High-Speed Atomic Force Microscopy. ACS Nano, 2017, 11, 12202-12209.	7.3	85
18	A Critical Role of Ser26 Hydrogen Bonding in Al²42 Assembly and Toxicity. Biochemistry, 2017, 56, 6321-6324.	1.2	3

#	Article	IF	CITATIONS
19	Pittsburgh Compoundâ€B (PiB) binds amyloid βâ€protein protofibrils. Journal of Neurochemistry, 2017, 140, 210-215.	2.1	33
20	Preparation of pure populations of covalently stabilized amyloid β-protein oligomers of specific sizes. Analytical Biochemistry, 2017, 518, 78-85.	1.1	26
21	Aggregation of Chameleon Peptides: Implications of α-Helicity in Fibril Formation. Journal of Physical Chemistry B, 2016, 120, 5874-5883.	1.2	22
22	High-speed atomic force microscopy reveals structural dynamics of amyloid β _{1–42} aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5835-5840.	3.3	179
23	Design, Characterization, and Use of a Novel Amyloid β-Protein Control for Assembly, Neurotoxicity, and Gene Expression Studies. Biochemistry, 2016, 55, 5049-5060.	1.2	5
24	Amyloid β-Protein Assembly and Alzheimer's Disease: Dodecamers of Aβ42, but Not of Aβ40, Seed Fibril Formation. Journal of the American Chemical Society, 2016, 138, 1772-1775.	6.6	123
25	Synaptic Amyloid-β Oligomers Precede p-Tau and Differentiate High Pathology Control Cases. American Journal of Pathology, 2016, 186, 185-198.	1.9	94
26	Amyloid β-Protein C-Terminal Fragments: Formation of Cylindrins and β-Barrels. Journal of the American Chemical Society, 2016, 138, 549-557.	6.6	91
27	Inhibiting amyloid βâ€protein assembly: Size–activity relationships among grape seedâ€derived polyphenols. Journal of Neurochemistry, 2015, 135, 416-430.	2.1	28
28	O2-05-05: Rescue of synapses with glatiramer acetate immunotherapy in a murine model of Alzheimer's disease. , 2015, 11, P185-P185.		0
29	Na, K-ATPase α3 is a death target of Alzheimer patient amyloid-β assembly. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4465-74.	3.3	112
30	Design and Characterization of Chemically Stabilized AÎ ² 42 Oligomers. Biochemistry, 2015, 54, 5315-5321.	1.2	13
31	Role of Species-Specific Primary Structure Differences in Aβ42 Assembly and Neurotoxicity. ACS Chemical Neuroscience, 2015, 6, 1941-1955.	1.7	26
32	Amyloid β-Protein Assembly: Differential Effects of the Protective A2T Mutation and Recessive A2V Familial Alzheimer's Disease Mutation. ACS Chemical Neuroscience, 2015, 6, 1732-1740.	1.7	55
33	Gly25-Ser26 Amyloid β-Protein Structural Isomorphs Produce Distinct Aβ42 Conformational Dynamics and Assembly Characteristics. Journal of Molecular Biology, 2014, 426, 2422-2441.	2.0	30
34	Factors That Drive Peptide Assembly from Native to Amyloid Structures: Experimental and Theoretical Analysis of [Leu-5]-Enkephalin Mutants. Journal of Physical Chemistry B, 2014, 118, 7247-7256.	1.2	26
35	Nanoprobing of the Effect of Cu2+ Cations on Misfolding, Interaction and Aggregation of Amyloid Î ² Peptide. Journal of NeuroImmune Pharmacology, 2013, 8, 262-273.	2.1	40
36	C-Terminal Turn Stability Determines Assembly Differences between Aβ40 and Aβ42. Journal of Molecular Biology, 2013, 425, 292-308.	2.0	73

#	Article	IF	CITATIONS
37	Biophysical Characterization of $A\hat{l}^2$ Assembly. Modecular Medicine and Medicinal, 2013, , 83-125.	0.4	1
38	On the subject of rigor in the study of amyloid β-protein assembly. Alzheimer's Research and Therapy, 2013, 5, 39.	3.0	64
39	Amyloid β-protein oligomers and Alzheimer's disease. Alzheimer's Research and Therapy, 2013, 5, 60.	3.0	209
40	Factors That Drive Peptide Assembly and Fibril Formation: Experimental and Theoretical Analysis of Sup35 NNQQNY Mutants. Journal of Physical Chemistry B, 2013, 117, 8436-8446.	1.2	24
41	Mechanism of amyloid βâ^'protein dimerization determined using singleâ^'molecule AFM force spectroscopy. Scientific Reports, 2013, 3, 2880.	1.6	66
42	1α,25-Dihydroxyvitamin D3 and Resolvin D1 Retune the Balance between Amyloid-β Phagocytosis and Inflammation in Alzheimer's Disease Patients. Journal of Alzheimer's Disease, 2013, 34, 155-170.	1.2	109
43	The exception makes the rule. Neurology, 2012, 79, 206-207.	1.5	7
44	Preface. Progress in Molecular Biology and Translational Science, 2012, 107, xiii-xiv.	0.9	4
45	Preparation of Stable Amyloid β-Protein Oligomers of Defined Assembly Order. Methods in Molecular Biology, 2012, 849, 23-31.	0.4	19
46	Quasielastic Light Scattering Study of Amyloid β-Protein Fibrillogenesis. Methods in Molecular Biology, 2012, 849, 69-83.	0.4	7
47	Familial Alzheimer's Disease Mutations Differentially Alter Amyloid β-Protein Oligomerization. ACS Chemical Neuroscience, 2012, 3, 909-918.	1.7	80
48	Continuous Flow Reactor for the Production of Stable Amyloid Protein Oligomers. Biochemistry, 2012, 51, 6342-6349.	1.2	8
49	Structural Dynamics of the Amyloid β-Protein Monomer Folding Nucleus. Biochemistry, 2012, 51, 3957-3959.	1.2	15
50	Effect of melatonin on α-synuclein self-assembly and cytotoxicity. Neurobiology of Aging, 2012, 33, 2172-2185.	1.5	77
51	Brain-Targeted Proanthocyanidin Metabolites for Alzheimer's Disease Treatment. Journal of Neuroscience, 2012, 32, 5144-5150.	1.7	188
52	Alzheimer's Disease and the Amyloid Î ² -Protein. Progress in Molecular Biology and Translational Science, 2012, 107, 101-124.	0.9	106
53	Dynamics of Metastable β-Hairpin Structures in the Folding Nucleus of Amyloid β-Protein. Journal of Physical Chemistry B, 2012, 116, 6311-6325.	1.2	28
54	Phenolic Compounds Prevent Amyloid β-Protein Oligomerization and Synaptic Dysfunction by Site-specific Binding. Journal of Biological Chemistry, 2012, 287, 14631-14643.	1.6	208

#	Article	IF	CITATIONS
55	Structural dynamics of the ΔE22 (Osaka) familial Alzheimer's disease-linked amyloid β-protein. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2011, 18, 98-107.	1.4	50
56	Carvedilol as a potential novel agent for the treatment of Alzheimer's disease. Neurobiology of Aging, 2011, 32, 2321.e1-2321.e12.	1.5	54
57	Two Distinct Amyloid β-Protein (Aβ) Assembly Pathways Leading to Oligomers and Fibrils Identified by Combined Fluorescence Correlation Spectroscopy, Morphology, and Toxicity Analyses. Journal of Biological Chemistry, 2011, 286, 11555-11562.	1.6	102
58	Cerebrospinal Fluid from Alzheimer's Disease Patients Promotes Amyloid β-Protein Oligomerization. Journal of Alzheimer's Disease, 2010, 21, 81-86.	1.2	9
59	Effects of the English (H6R) and Tottori (D7N) Familial Alzheimer Disease Mutations on Amyloid β-Protein Assembly and Toxicity. Journal of Biological Chemistry, 2010, 285, 23186-23197.	1.6	131
60	Elucidation of Amyloid β-Protein Oligomerization Mechanisms: Discrete Molecular Dynamics Study. Journal of the American Chemical Society, 2010, 132, 4266-4280.	6.6	231
61	Grape Derived Polyphenols Attenuate Tau Neuropathology in a Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 22, 653-661.	1.2	115
62	Amino Acid Position-specific Contributions to Amyloid β-Protein Oligomerization. Journal of Biological Chemistry, 2009, 284, 23580-23591.	1.6	79
63	Isolation and Characterization of Patient-derived, Toxic, High Mass Amyloid β-Protein (Aβ) Assembly from Alzheimer Disease Brains. Journal of Biological Chemistry, 2009, 284, 32895-32905.	1.6	162
64	Amyloid β-Protein Assembly and Alzheimer Disease. Journal of Biological Chemistry, 2009, 284, 4749-4753.	1.6	564
65	Alzheimer disease macrophages shuttle amyloid-beta from neurons to vessels, contributing to amyloid angiopathy. Acta Neuropathologica, 2009, 117, 111-124.	3.9	99
66	Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer's disease. Nature Chemistry, 2009, 1, 326-331.	6.6	835
67	A facile method for expression and purification of the Alzheimer's diseaseâ€associated amyloid βâ€peptide. FEBS Journal, 2009, 276, 1266-1281.	2.2	237
68	Amyloid β-Protein: Experiment and Theory on the 21â^'30 Fragment. Journal of Physical Chemistry B, 2009, 113, 6041-6046.	1.2	50
69	Amyloid β Protein: Aβ40 Inhibits Aβ42 Oligomerization. Journal of the American Chemical Society, 2009, 131, 6316-6317.	6.6	106
70	A Peptide Hairpin Inhibitor of Amyloid β-Protein Oligomerization and Fibrillogenesis. Biochemistry, 2009, 48, 11329-11331.	1.2	53
71	Structure–neurotoxicity relationships of amyloid β-protein oligomers. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14745-14750.	3.3	701
72	On the nucleation of amyloid Î ² -protein monomer folding. Protein Science, 2009, 14, 1581-1596.	3.1	310

#	Article	IF	CITATIONS
73	Identification of Antihypertensive Drugs Which Inhibit Amyloid-β Protein Oligomerization. Journal of Alzheimer's Disease, 2009, 16, 49-57.	1.2	67
74	Heterogeneity in Red Wine Polyphenolic Contents Differentially Influences Alzheimer's Disease-type Neuropathology and Cognitive Deterioration. Journal of Alzheimer's Disease, 2009, 16, 59-72.	1.2	116
75	Effects of the Arctic (E ²² →G) Mutation on Amyloid β-Protein Folding: Discrete Molecular Dynamics Study. Journal of the American Chemical Society, 2008, 130, 17413-17422.	6.6	73
76	Effects of Familial Alzheimer's Disease Mutations on the Folding Nucleation of the Amyloid β-Protein. Journal of Molecular Biology, 2008, 381, 221-228.	2.0	96
77	Amyloid β-Protein Monomer Folding: Free-Energy Surfaces Reveal Alloform-Specific Differences. Journal of Molecular Biology, 2008, 384, 450-464.	2.0	219
78	Intramembrane Proteolysis of GXGD-type Aspartyl Proteases Is Slowed by a Familial Alzheimer Disease-like Mutation. Journal of Biological Chemistry, 2008, 283, 30121-30128.	1.6	34
79	Amyloid β -Protein Assembly as a Therapeutic Target of Alzheimers Disease. Current Pharmaceutical Design, 2008, 14, 3231-3246.	0.9	107
80	Effects of Grape Seed-derived Polyphenols on Amyloid β-Protein Self-assembly and Cytotoxicity*. Journal of Biological Chemistry, 2008, 283, 32176-32187.	1.6	177
81	Grape-Derived Polyphenolics Prevent AÂ Oligomerization and Attenuate Cognitive Deterioration in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2008, 28, 6388-6392.	1.7	339
82	The Tottori (D7N) and English (H6R) Familial Alzheimer Disease Mutations Accelerate AÎ ² Fibril Formation without Increasing Protofibril Formation. Journal of Biological Chemistry, 2007, 282, 4916-4923.	1.6	96
83	Familial Alzheimer's disease mutations alter the stability of the amyloid β-protein monomer folding nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16522-16527.	3.3	120
84	Role of Electrostatic Interactions in Amyloid β-Protein (Aβ) Oligomer Formation: A Discrete Molecular Dynamics Study. Biophysical Journal, 2007, 92, 4064-4077.	0.2	108
85	Elucidating Amyloid β-Protein Folding and Assembly:  A Multidisciplinary Approach. Accounts of Chemical Research, 2006, 39, 635-645.	7.6	203
86	Common threads in neurodegenerative disorders of aging. , 2006, 2, 322-326.		6
87	Preparation of Amyloid βâ€Protein for Structural and Functional Studies. Methods in Enzymology, 2006, 413, 20-33.	0.4	164
88	Towards Inhibition of Amyloid \hat{I}^2 -protein Oligomerization. , 2006, , 515-516.		1
89	Munumbicins E-4 and E-5: novel broad-spectrum antibiotics fromStreptomycesNRRL 3052. FEMS Microbiology Letters, 2006, 255, 296-300.	0.7	87
90	A γ-secretase-like intramembrane cleavage of TNFα by the GxGD aspartyl protease SPPL2b. Nature Cell Biology, 2006, 8, 894-896.	4.6	130

#	Article	IF	CITATIONS
91	Amyloid beta-protein monomer structure: A computational and experimental study. Protein Science, 2006, 15, 420-428.	3.1	236
92	Structure of the 21-30 fragment of amyloid \hat{I}^2 -protein. Protein Science, 2006, 15, 1239-1247.	3.1	140
93	Computer Simulations of Alzheimers Amyloid β-Protein Folding and Assembly. Current Alzheimer Research, 2006, 3, 493-504.	0.7	36
94	Quasielastic Light Scattering Study of Amyloid β-Protein Fibril Formation. Protein and Peptide Letters, 2006, 13, 247-254.	0.4	16
95	Determination of Peptide Oligomerization State Using Rapid Photochemical Crosslinking. , 2005, 299, 011-018.		22
96	Quasielastic Light Scattering for Protein Assembly Studies. , 2005, 299, 153-174.		44
97	Preparation of Aggregate-Free, Low Molecular Weight Amyloid-β for Assembly and Toxicity Assays. , 2005, 299, 003-010.		51
98	Folding events in the 21-30 region of amyloid Â-protein (AÂ) studied in silico. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6015-6020.	3.3	122
99	Solvent and mutation effects on the nucleation of amyloid Â-protein folding. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18258-18263.	3.3	113
100	Conformational Dynamics of Amyloid β-Protein Assembly Probed Using Intrinsic Fluorescenceâ€. Biochemistry, 2005, 44, 13365-13376.	1.2	60
101	Neurotoxic protein oligomers — what you see is not always what you get. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2005, 12, 88-95.	1.4	208
102	Amyloid β-Protein: Monomer Structure and Early Aggregation States of Aβ42 and Its Pro19Alloform. Journal of the American Chemical Society, 2005, 127, 2075-2084.	6.6	321
103	Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp Microbiology (United Kingdom), 2004, 150, 785-793.	0.7	189
104	In silico study of amyloid Â-protein folding and oligomerization. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17345-17350.	3.3	327
105	Rapid Photochemical Cross-Linking — A New Tool for Studies of Metastable, Amyloidogenic Protein Assemblies. ChemInform, 2004, 35, no.	0.1	1
106	Rapid Photochemical Cross-LinkingA New Tool for Studies of Metastable, Amyloidogenic Protein Assemblies. Accounts of Chemical Research, 2004, 37, 357-364.	7.6	204
107	Small assemblies of unmodified amyloid β-protein are the proximate neurotoxin in Alzheimer's disease. Neurobiology of Aging, 2004, 25, 569-580.	1.5	475
108	Amyloid Â-protein (AÂ) assembly: AÂ40 and AÂ42 oligomerize through distinct pathways. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 330-335.	3.3	1,208

#	Article	IF	CITATIONS
109	A Molecular Switch in Amyloid Assembly:  Met35 and Amyloid β-Protein Oligomerization. Journal of the American Chemical Society, 2003, 125, 15359-15365.	6.6	158
110	Kinetics of Amyloid β-Protein Degradation Determined by Novel Fluorescence- and Fluorescence Polarization-based Assays. Journal of Biological Chemistry, 2003, 278, 37314-37320.	1.6	106
111	A Direct Interaction between Transforming Growth Factor (TGF)-βs and Amyloid-β Protein Affects Fibrillogenesis in a TGF-βReceptor-independent Manner. Journal of Biological Chemistry, 2003, 278, 38715-38722.	1.6	22
112	Elucidation of Primary Structure Elements Controlling Early Amyloid β-Protein Oligomerization. Journal of Biological Chemistry, 2003, 278, 34882-34889.	1.6	272
113	Structure determination of micelle-like intermediates in amyloid Â-protein fibril assembly by using small angle neutron scattering. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 150-154.	3.3	182
114	Kinetic Studies of Amyloid β-Protein Fibril Assembly. Journal of Biological Chemistry, 2002, 277, 36948-36954.	1.6	315
115	Paradigm shifts in Alzheimer's disease and other neurodegenerative disorders: The emerging role of oligomeric assemblies. Journal of Neuroscience Research, 2002, 69, 567-577.	1.3	540
116	A non-amyloidogenic function of BACE-2 in the secretory pathway. Journal of Neurochemistry, 2002, 81, 1011-1020.	2.1	99
117	ldentification and characterization of key kinetic intermediates in amyloid β-protein fibrillogenesis11Edited by F. Cohen. Journal of Molecular Biology, 2001, 312, 1103-1119.	2.0	667
118	Presenilinâ€dependent γâ€secretase processing of βâ€amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Reports, 2001, 2, 835-841.	2.0	457
119	The 'Arctic' APP mutation (E693G) causes Alzheimer's disease by enhanced Aβ protofibril formation. Nature Neuroscience, 2001, 4, 887-893.	7.1	1,042
120	In vitro studies of amyloid β-protein fibril assembly and toxicity provide clues to the aetiology of Flemish variant (Ala692→Cly) Alzheimer's disease. Biochemical Journal, 2001, 355, 869-877.	1.7	107
121	Amyloid Î ² -Protein Oligomerization. Journal of Biological Chemistry, 2001, 276, 35176-35184.	1.6	362
122	A de novo designed helix-turn-helix peptide forms nontoxic amyloid fibrils. Nature Structural Biology, 2000, 7, 1095-1099.	9.7	122
123	An improved method of preparing the amyloid β-protein for fibrillogenesis and neurotoxicity experiments. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2000, 7, 166-178.	1.4	232
124	Protofibrillar Intermediates of Amyloid β-Protein Induce Acute Electrophysiological Changes and Progressive Neurotoxicity in Cortical Neurons. Journal of Neuroscience, 1999, 19, 8876-8884.	1.7	926
125	[27] Monitoring protein assembly using quasielastic light scattering spectroscopy. Methods in Enzymology, 1999, 309, 429-459.	0.4	85
126	Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology (United Kingdom), 1999, 145, 1919-1926.	0.7	198

#	Article	IF	CITATIONS
127	Amyloid β-Protein Fibrillogenesis. Journal of Biological Chemistry, 1999, 274, 25945-25952.	1.6	977
128	Structural and kinetic features of amyloid β-protein fibrillogenesis. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 1998, 5, 121-142.	1.4	265
129	Enhanced Production and Oligomerization of the 42-residue Amyloid β-Protein by Chinese Hamster Ovary Cells Stably Expressing Mutant Presenilins. Journal of Biological Chemistry, 1997, 272, 7977-7982.	1.6	269
130	Amyloid β-Protein Fibrillogenesis. Journal of Biological Chemistry, 1997, 272, 22364-22372.	1.6	967
131	Aggregation of Secreted Amyloid β-Protein into Sodium Dodecyl Sulfate-stable Oligomers in Cell Culture. Journal of Biological Chemistry, 1995, 270, 9564-9570.	1.6	345
132	Normal Cellular Processing of the β-Amyloid Precursor Protein Results in the Secretion of the Amyloid β Peptide and Related Moleculesa. Annals of the New York Academy of Sciences, 1993, 695, 109-116.	1.8	112
133	Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature, 1992, 359, 322-325.	13.7	1,919