
Youngsoo Jun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3538317/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Genome-Wide Screen Reveals That Endocytic Genes Are Important for Pma1p Asymmetry during Cell Division in Saccharomyces cerevisiae. International Journal of Molecular Sciences, 2022, 23, 2364.	4.1	2
2	Structural basis for mitoguardin-2 mediated lipid transport at ER-mitochondrial membrane contact sites. Nature Communications, 2022, 13, .	12.8	20
3	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /Ov	verlock 10 9.1	Tf 50 662 1,430
4	Quaternary structures of Vac8 differentially regulate the Cvt and PMN pathways. Autophagy, 2020, 16, 991-1006.	9.1	17
5	The Effects of Regulatory Lipids on Intracellular Membrane Fusion Mediated by Dynamin-Like GTPases. Frontiers in Cell and Developmental Biology, 2020, 8, 518.	3.7	9
6	SPIN90, an adaptor protein, alters the proximity between Rab5 and Gapex5 and facilitates Rab5 activation during EGF endocytosis. Experimental and Molecular Medicine, 2019, 51, 1-14.	7.7	5
7	Sec17 (α-SNAP) and Sec18 (NSF) restrict membrane fusion to R-SNAREs, Q-SNAREs, and SM proteins from identical compartments. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23573-23581.	7.1	12
8	The structure of human EXD2 reveals a chimeric 3′ to 5′ exonuclease domain that discriminates substrates via metal coordination. Nucleic Acids Research, 2019, 47, 7078-7093.	14.5	29
9	Buforin-1 blocks neuronal SNARE-mediated membrane fusion by inhibiting SNARE complex assembly. Biochemical and Biophysical Research Communications, 2019, 514, 105-111.	2.1	2
10	Ergosterol interacts with Sey1p to promote atlastinâ€mediated endoplasmic reticulum membrane fusion in <i>Saccharomyces cerevisiae</i> . FASEB Journal, 2019, 33, 3590-3600.	0.5	11
11	An In Vitro Assay of Trans-SNARE Complex Formation During Yeast Vacuole Fusion Using Epitope Tag-Free SNAREs. Methods in Molecular Biology, 2019, 1860, 277-288.	0.9	0
12	TAGLN2 polymerizes G-actin in a low ionic state but blocks Arp2/3-nucleated actin branching in physiological conditions. Scientific Reports, 2018, 8, 5503.	3.3	18
13	T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nature Communications, 2018, 9, 3630.	12.8	81
14	Strategies to Tackle Radiation Resistance by Penetrating Cancer Stem Cell Line of Scrimmage. Recent Patents on Anti-Cancer Drug Discovery, 2018, 13, 18-39.	1.6	4
15	Mechanistic insight into the nucleus–vacuole junction based on the Vac8p–Nvj1p crystal structure. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4539-E4548.	7.1	33
16	Crystal structures of Mmm1 and Mdm12–Mmm1 reveal mechanistic insight into phospholipid trafficking at ER-mitochondria contact sites. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9502-E9511.	7.1	88
17	Molecular mechanisms of atlastin-mediated ER membrane fusion revealed by a FRET-based single-vesicle fusion assay. Scientific Reports, 2017, 7, 8700.	3.3	9
18	The crystal structure of human Rogdi provides insight into the causes of Kohlschutter-Tönz Syndrome. Scientific Reports, 2017, 7, 3972.	3.3	9

Youngsoo Jun

#	Article	IF	CITATIONS
19	Roles of Wnt Target Genes in the Journey of Cancer Stem Cells. International Journal of Molecular Sciences, 2017, 18, 1604.	4.1	70
20	TrpA1 Regulates Defecation of Food-Borne Pathogens under the Control of the Duox Pathway. PLoS Genetics, 2016, 12, e1005773.	3.5	50
21	Structural insight for substrate tolerance to 2-deoxyribose-5-phosphate aldolase from the pathogen Streptococcus suis. Journal of Microbiology, 2016, 54, 311-321.	2.8	6
22	Structural insights into the interaction of human p97 Nâ€ŧerminal domain and SHP motif in Derlinâ€₁ rhomboid pseudoprotease. FEBS Letters, 2016, 590, 4402-4413.	2.8	13
23	Structural insights into the interaction of p97 N-terminus domain and VBM in rhomboid protease, RHBDL4. Biochemical Journal, 2016, 473, 2863-2880.	3.7	20
24	Crystal structure of SEL1L: Insight into the roles of SLR motifs in ERAD pathway. Scientific Reports, 2016, 6, 20261.	3.3	19
25	Bioengineered yeast-derived vacuoles with enhanced tissue-penetrating ability for targeted cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 710-715.	7.1	35
26	SNAREs support atlastin-mediated homotypic ER fusion in <i>Saccharomyces cerevisiae</i> . Journal of Cell Biology, 2015, 210, 451-470.	5.2	18
27	The yeast atlastin Sey1p may not be sufficient to drive homotypic ER fusion at its physiological concentration. FASEB Journal, 2015, 29, LB195.	0.5	0
28	Crystallization and preliminary X-ray crystallographic analysis of <scp>L</scp> -arabinose isomerase from thermophilic <i>Geobacillus kaustophilus</i> . Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 108-112.	0.8	6
29	In vitro assay using engineered yeast vacuoles for neuronal SNARE-mediated membrane fusion. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7677-7682.	7.1	12
30	Peroxisome-localized hepatitis Bx protein increases the invasion property of hepatocellular carcinoma cells. Archives of Virology, 2014, 159, 2549-2557.	2.1	17
31	SRSF2 promotes splicing and transcription of exon 11 included isoform in Ron proto-oncogene. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1132-1140.	1.9	21
32	hnRNP A1 contacts exon 5 to promote exon 6 inclusion of apoptotic Fas gene. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 825-835.	4.9	27
33	Forced interaction of cell surface proteins with Derlin-1 in the endoplasmic reticulum is sufficient to induce their dislocation into the cytosol for degradation. Biochemical and Biophysical Research Communications, 2013, 430, 787-792.	2.1	9
34	The C-Terminal Amino Acid of the MHC-I Heavy Chain Is Critical for Binding to Derlin-1 in Human Cytomegalovirus US11-Induced MHC-I Degradation. PLoS ONE, 2013, 8, e72356.	2.5	9
35	SPIN90 Knockdown Attenuates the Formation and Movement of Endosomal Vesicles in the Early Stages of Epidermal Growth Factor Receptor Endocytosis. PLoS ONE, 2013, 8, e82610.	2.5	17
36	The binding of Vps33p to the Nâ€ŧerminal domain of the yeast vacuolar syntaxin Vam3p is not required for yeast vacuole fusion. FASEB Journal, 2012, 26, 988.1.	0.5	0

Youngsoo Jun

#	Article	IF	CITATIONS
37	Human CD1d molecules are resistant to human cytomegalovirus US2- and US11-mediated degradation. Biochemical and Biophysical Research Communications, 2011, 413, 616-622.	2.1	6
38	Receptorâ€Mediated ER Export of Human MHC Class I Molecules Is Regulated by the Câ€Terminal Single Amino Acid. Traffic, 2011, 12, 42-55.	2.7	15
39	A lipid-anchored SNARE supports membrane fusion. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17325-17330.	7.1	46
40	Tmp21, a novel MHC-l interacting protein, preferentially binds to β ₂ -microglobulin-free MHC-l heavy chains. BMB Reports, 2011, 44, 369-374.	2.4	5
41	HOPS prevents the disassembly of trans-SNARE complexes by Sec17p/Sec18p during membrane fusion. EMBO Journal, 2010, 29, 1948-1960.	7.8	99
42	Reconstituted membrane fusion requires regulatory lipids, SNAREs and synergistic SNARE chaperones. EMBO Journal, 2008, 27, 2031-2042.	7.8	157
43	Human Cytomegalovirus UL18 Utilizes US6 for Evading the NK and T-Cell Responses. PLoS Pathogens, 2008, 4, e1000123.	4.7	28
44	Assays of vacuole fusion resolve the stages of docking, lipid mixing, and content mixing. Proceedings of the United States of America, 2007, 104, 13010-13015.	7.1	78
45	Excess vacuolar SNAREs drive lysis and Rab bypass fusion. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13551-13558.	7.1	74
46	Sec18p and Vam7p remodel trans-SNARE complexes to permit a lipid-anchored R-SNARE to support yeast vacuole fusion. EMBO Journal, 2007, 26, 4935-4945.	7.8	39
47	Reversible, cooperative reactions of yeast vacuole docking. EMBO Journal, 2006, 25, 5260-5269.	7.8	29
48	Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. Journal of Cell Biology, 2004, 167, 1087-1098.	5.2	204
49	Diacylglycerol and Its Formation by Phospholipase C Regulate Rab- and SNARE-dependent Yeast Vacuole Fusion. Journal of Biological Chemistry, 2004, 279, 53186-53195.	3.4	84
50	Structural and Functional Dissection of Human Cytomegalovirus US3 in Binding Major Histocompatibility Complex Class I Molecules. Journal of Virology, 2000, 74, 11262-11269.	3.4	45
51	Human Cytomegalovirus Gene Products US3 and US6 Down-Regulate Trophoblast Class I MHC Molecules. Journal of Immunology, 2000, 164, 805-811.	0.8	102