Davood Habibi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3538220/publications.pdf

Version: 2024-02-01

236925 254184 2,129 113 25 43 citations h-index g-index papers 138 138 138 1617 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Removal of the Cd(II), Ni(II), and Pb(II) ions via their complexation with the uric acid-based adsorbent and use of the corresponding Cd-complex for the synthesis of tetrazoles. Chemical Physics Letters, 2022, 786, 139195.	2.6	6
2	The phenyltetrazolethiol-based nickel complex: a versatile catalyst for the synthesis of diverse amidoalkyl naphthols and chromenes. Research on Chemical Intermediates, 2022, 48, 683-702.	2.7	1
3	Design, preparation, biological investigations and application of a benzoguanamine-based nickel complex for the synthesis of benzimidazoles. Journal of Molecular Structure, 2022, 1254, 132328.	3.6	4
4	ZrCl4 or NH4VO3 as a versatile catalyst for the capable synthesis of xanthenediones and their corresponding theoretical studies. Inorganic Chemistry Communication, 2022, , 109582.	3.9	1
5	An overview on the progress and development on the palladium catalyzed direct cyanation. Inorganica Chimica Acta, 2021, 514, 119956.	2.4	5
6	Synthesis of a novel acidic ionic liquid catalyst and its application for preparation of pyridines via a cooperative vinylogous anomeric-based oxidation. Research on Chemical Intermediates, 2021, 47, 1643-1661.	2.7	7
7	The capable Pd complex immobilized on the functionalized polymeric scaffold for the green benzylation reaction. Applied Organometallic Chemistry, 2021, 35, e6208.	3.5	2
8	Green Synthesis of 1H-pyrazolo[1,2-b]phthalazinedione-2-carbonitriles in the Presence of L-proline. Current Organocatalysis, 2021, 8, 321-329.	0.5	0
9	The nano-magnetite-loaded 2-mercaptobenzoxazole as an adsorbent for the selective removal of the Pb2+, Ni2+ and Cd2+ ions from aqueous solutions. Korean Journal of Chemical Engineering, 2021, 38, 1510-1521.	2.7	8
10	A New Supported Manganese-Based Coordination Complex as a Nano-Catalyst for the Synthesis of Indazolophthalazinetriones and Investigation of Its Antibacterial Activity. Chemistry, 2021, 3, 783-799.	2.2	4
11	A New Versatile Protocol for the Synthesis of Indazolophthalazinetriones. Russian Journal of Organic Chemistry, 2021, 57, 85-90.	0.8	0
12	Facile synthesis of tetrazoles catalyzed by the new copper nano-catalyst. Green Chemistry Letters and Reviews, 2020, 13, 50-59.	4.7	13
13	3-Mercapto-1,2,4-triazole Functionalized Fe ₃ O ₄ Based Cu Nanoparticles: A Capable Catalyst for the Synthesis of Diverse Tetrazoles from Amino Acids. Organic Preparations and Procedures International, 2020, 52, 139-146.	1.3	6
14	Synthesis of Tetrazoles from Amines Mediated by New Copper Nanocatalyst. Russian Journal of Organic Chemistry, 2019, 55, 1591-1597.	0.8	7
15	Copper nanoparticles: A capable and versatile catalyst for the synthesis of diverse 1-phenyl-1H-tetrazoles from amino acids. Polyhedron, 2019, 160, 170-179.	2.2	23
16	Preparation of novel palladium nanoparticles supported on magnetic iron oxide and their catalytic application in the synthesis of 2â€iminoâ€3â€phenylâ€2,3â€dihydrobenzo[<i>d</i>)]oxazolâ€5â€ols. Applied Organometallic Chemistry, 2018, 32, e4263.	3.5	2
17	Application of the Fe 3 O 4 @1,10â€phenanthrolineâ€5,6â€diol@Mn nanoâ€catalyst for the green synthesis of tetrazoles and its biological performance. Applied Organometallic Chemistry, 2018, 32, e4005.	3.5	14
18	Preparation of Fe ₃ O ₄ @5,10â€dihydropyrido[2,3â€ <i>b</i>)]quinoxalineâ€7,8â€diol copper complex: A capable nanocatalyst for the green synthesis of 1â€substituted 1 <i>H</i>)â€tetrazoles. Applied Organometallic Chemistry, 2018, 32, e3988.	3.5	20

#	Article	IF	CITATIONS
19	Laccase-catalyzed, aerobic oxidative coupling of 4-substituted urazoles with sodium arylsulfinates: Green and mild procedure for the synthesis of arylsulfonyl triazolidinediones. Tetrahedron Letters, 2018, 59, 383-387.	1.4	13
20	A novel tetrazole functionalized polymer-supported palladium nano-catalyst for the synthesis of various N-benzylated arylcyanamides. Journal of Alloys and Compounds, 2018, 763, 891-898.	5.5	7
21	A green and facile approach for the synthesis of N-monosubstituted ureas in water: Pd catalyzed reaction of arylcyanamides (an unexpected behavior of electron withdrawing groups). Polyhedron, 2018, 151, 520-529.	2.2	17
22	The Bismarck Brown Y based functional polymer-bound palladium nanoparticles as a capable catalyst for the synthesis of N-arylsulfonyl cyanamides. Polyhedron, 2018, 154, 138-147.	2.2	2
23	A versatile synthesis of arylaminotetrazoles by a magnetic Fe@Phendiol@Mn nanoâ€particle catalyst and its theoretical studies. Applied Organometallic Chemistry, 2017, 31, e3826.	3.5	10
24	Green and mild laccase-catalyzed aerobic oxidative coupling of benzenediol derivatives with various sodium benzenesulfinates. Tetrahedron Letters, 2017, 58, 289-293.	1.4	22
25	Phthalimide-N-sulfonic acid, an efficient catalyst for the synthesis of various isoindoline-1,3-dione derivatives. Chemical Papers, 2017, 71, 2293-2299.	2.2	2
26	The electrochemical synthesis of new benzofuran derivatives. Journal of Electroanalytical Chemistry, 2017, 801, 206-214.	3.8	6
27	A capable cobalt nanoâ€eatalyst for the <i>N</i> à€formylation of various amines and its biological activity studies. Applied Organometallic Chemistry, 2017, 31, e3874.	3.5	10
28	Unexpected behaviors of catechols with 2,3-diaminonaphthalene. Journal of Saudi Chemical Society, 2016, 20, 201-206.	5.2	0
29	Preparation and characterization of the pH and thermosensitive magnetic molecular imprinted nanoparticle polymer for the cancer drug delivery. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2349-2354.	2.2	26
30	Synthesis of pyranopyrazoles, benzopyrans, amino-2-chromenes and dihydropyrano[c]chromenes using ionic liquid with dual BrÃ,nsted acidic and Lewis basic sites. Chemical Papers, 2015, 69, .	2.2	18
31	Efficient synthesis of diethyltetrahydroquinoxalinediones. Russian Journal of Electrochemistry, 2015, 51, 56-62.	0.9	1
32	Nano-sized silica supported FeCl3 as an efficient heterogeneous catalyst for the synthesis of 1,2,4-triazine derivatives. Chinese Journal of Catalysis, 2015, 36, 620-625.	14.0	5
33	The synthesis and morphological analysis of conducting homopolymers and copolymers of aniline and N-methylpyrrole. Journal of the Iranian Chemical Society, 2015, 12, 447-456.	2.2	0
34	Fe3O4 nanoparticles as an efficient and reusable catalyst for the solvent-free synthesis of 9,9-dimethyl-9,10-dihydro-8H-benzo-[a]xanthen-11(12H)-ones. Chinese Journal of Catalysis, 2015, 36, 362-366.	14.0	13
35	Green and efficient one-pot Diels-Alder electro-organic cyclization reaction of 1,2-bis(bromomethyl)benzene with naphthoquinone derivatives. Journal of Electroanalytical Chemistry, 2015, 759, 190-193.	3.8	5
36	Chemical and Electrochemical Syntheses of Benzo[<i>b</i>](1,4)â€diazepineâ€7,8â€diones. Journal of Heterocyclic Chemistry, 2015, 52, 197-200.	2.6	4

#	Article	IF	CITATIONS
37	An efficient and recyclable bifunctional acid–base ionic liquid for synthesis of 1H-indazolo[1,2-b]phthalazinetriones. Research on Chemical Intermediates, 2015, 41, 6245-6255.	2.7	6
38	Efficient thioacetalisation of carbonyl compounds. Chemical Papers, 2014, 68, .	2.2	0
39	Manganese nanocatalyst and N-hydroxyphthalimide as an efficient catalytic system for selective oxidation of ethylbenzene, cyclohexene and oximes under aerobic condition. Journal of Molecular Catalysis A, 2014, 382, 41-54.	4.8	40
40	An unexpected oxidative decarboxylation reaction of 2,3-dihydroxybenzoic acid in the synthesis of new dibenzyltetrahydroquinoxalinediones. Tetrahedron, 2014, 70, 4361-4366.	1.9	2
41	Doxorubicin poly N -vinylpyrrolidone and poly N -isopropylacrylamide-co- N -vinylpyrrolidone coated magnetic nanoparticles. Applied Surface Science, 2014, 320, 301-308.	6.1	9
42	Application of supported Mn(<scp>iii</scp>), Fe(<scp>iii</scp>) and Co(<scp>ii</scp>) as heterogeneous, selective and highly reusable nano catalysts for synthesis of arylaminotetrazoles, and DFT studies of the products. RSC Advances, 2014, 4, 47625-47636.	3.6	25
43	The green and convergent paired Diels–Alder electro-synthetic reaction of 1,4-hydroquinone with 1,2-bis(bromomethyl)benzene. Electrochemistry Communications, 2014, 49, 65-69.	4.7	17
44	Synthesis of New 1-Substituted-1H-1,2,3,4-Tetrazoles from L-α-Amino Acids and Their Biological Assays. Letters in Organic Chemistry, 2014, 11, 145-151.	0.5	5
45	Green synthesis of formamides using the Natrolite zeolite as a natural, efficient and recyclable catalyst. Journal of Molecular Catalysis A, 2013, 378, 148-155.	4.8	86
46	An ultrasound-promoted green approach for the N-formylation of amines under solvent- and catalyst-free conditions at room temperature. Comptes Rendus Chimie, 2013, 16, 1008-1016.	0.5	22
47	A highly sensitive supported manganese-based voltammetric sensor for the electrocatalytic determination of captopril. Sensors and Actuators B: Chemical, 2013, 182, 80-86.	7.8	14
48	Ultrasound-promoted synthesis of novel 2-imino-3-aryl-2,3-dihydrobenzo[d]oxazol-5-ol 2-iminooxazolidines derivatives. Tetrahedron, 2013, 69, 3082-3087.	1.9	22
49	Efficient catalytic systems based on cobalt for oxidation of ethylbenzene, cyclohexene and oximes in the presence of N-hydroxyphthalimide. Applied Catalysis A: General, 2013, 466, 282-292.	4.3	53
50	Characterization and catalytic activity of a novel Fe nano-catalyst as efficient heterogeneous catalyst for selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol. Journal of Molecular Catalysis A, 2013, 372, 90-99.	4.8	78
51	Synthesis, characterization and application of a nano-manganese-catalyst as an efficient solid catalyst for solvent free selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol. Applied Surface Science, 2013, 276, 487-496.	6.1	30
52	P2O5–SiO2 as an efficient heterogeneous catalyst for the solvent-free synthesis of 1-substituted 1H-1,2,3,4-tetrazoles under conventional and ultrasound irradiation conditions. Monatshefte FÃ⅓r Chemie, 2013, 144, 725-728.	1.8	51
53	Preparation, characterization and catalytic activity of a nano-Co(II)-catalyst as a high efficient heterogeneous catalyst for the selective oxidation of ethylbenzene, cyclohexene, and benzyl alcohol. Comptes Rendus Chimie, 2013, 16, 888-896.	0.5	31
54	Silica Sulfuric Acid as an Efficient Heterogeneous Catalyst for the Solvent-Free Synthesis of 1-Substituted 1H-1,2,3,4-Tetrazoles. Journal of Chemistry, 2013, 2013, 1-4.	1.9	9

#	Article	IF	CITATIONS
55	$\langle i \rangle N \langle i \rangle$ -Formylation of Anilines with Silica Sulfuric Acid under Solvent-Free Conditions. Journal of Chemistry, 2013, 2013, 1-6.	1.9	6
56	Acetylation of Phenols, Anilines, and Thiols Using Silica Sulfuric Acid under Solvent-Free Conditions. Journal of Chemistry, 2013, 2013, 1-6.	1.9	5
57	Solvent-Free Synthesis of 1-Aryl-1H-1,2,3,4-Tetrazoles using FeCl3–SiO2 Catalysis under Conventional and Ultrasound Irradiation Conditions. Journal of Chemical Research, 2013, 37, 464-466.	1.3	7
58	An Efficient One-pot Synthesis of Dihydropyrano[c]chromenes and Amino-2-chromenes under Solvent-free Conditions. Journal of Chemical Research, 2013, 37, 253-255.	1.3	8
59	Synthesis of 1,4-Dihydropyridines Bearing a Carbamate Moiety on the 4-Position. Journal of Chemistry, 2013, 2013, 1-6.	1.9	5
60	A Very Simple, Highly Efficient and Catalyst-free Procedure for the NFormylation of Amines Using Triethyl orthoformate in Water Under Ultrasound-irradiation. Letters in Organic Chemistry, 2013, 10, 209-212.	0.5	22
61	Synthesis of a New Cyclen-based Compound as a Potent Anti-tumor Medicine. Oriental Journal of Chemistry, 2013, 29, 975-978.	0.3	1
62	Synthesis of Aryl Nitriles using the Stable Aryl Diazonium Silica Sulfates. Journal of Chemical Research, 2012, 36, 573-574.	1.3	27
63	Ultrasound-Promoted Regioselective Synthesis of 1-Aryl-5-amino-1H-tetraÂzoles. Synlett, 2012, 23, 2795-2798.	1.8	33
64	ZnO as an Effective and Reusable Heterogeneous Catalyst for the Synthesis of Arylaminotetrazoles. Synthetic Communications, 2012, 42, 2023-2032.	2.1	30
65	Selective conversion of C=N bonds to their corresponding carbonyl compounds by the tribromoisocyanuric acid/wet SiO2 system as a novel reagent. Monatshefte FÃ1/4r Chemie, 2012, 143, 809-814.	1.8	7
66	Synthesis of arylaminotetrazoles by ZnCl2/AlCl3/silica as an efficient heterogeneous catalyst. Monatshefte FA $\frac{1}{4}$ r Chemie, 2012, 143, 925-930.	1.8	37
67	AlCl ₃ as an Effective Lewis Acid for the Synthesis of Arylaminotetrazoles. Synthetic Communications, 2011, 41, 2135-2145.	2.1	45
68	Green synthesis of the 1-substituted 1H-1,2,3,4-tetrazoles by application of the Natrolite zeolite as a new and reusable heterogeneous catalyst. Green Chemistry, 2011, 13, 3499.	9.0	94
69	Efficient synthesis of arylaminotetrazoles in water. Tetrahedron, 2010, 66, 3866-3870.	1.9	60
70	Silica-Supported Ferric Chloride (FeCl ₃ -SiO ₂): An Efficient and Recyclable Heterogeneous Catalyst for the Preparation of Arylaminotetrazoles. Synthetic Communications, 2010, 40, 3159-3167.	2.1	58
71	Synthesis of 6-Substituted Imidazo $[2,1-b][1,3]$ thiazoles and 2-Substituted Imidazo $[2,1-b][1,3]$ benzothiazoles via Pd/Cu-Mediated Sonogashira Coupling. Synlett, 2009, 2009, 2601-2604.	1.8	6
72	A general synthetic method for the formation of arylaminotetrazoles using natural natrolite zeolite as a new and reusable heterogeneous catalyst. Tetrahedron, 2009, 65, 10715-10719.	1.9	84

#	Article	IF	Citations
73	FeCl3–SiO2 as a reusable heterogeneous catalyst for the synthesis of 5-substituted 1H-tetrazoles via [2+3] cycloaddition of nitriles and sodium azide. Tetrahedron Letters, 2009, 50, 4435-4438.	1.4	198
74	Synthesis of 6-substituted imidazo[2,1-b]thiazoles via Pd/Cu-mediated Sonogashira coupling in water. Tetrahedron Letters, 2009, 50, 5459-5462.	1.4	48
75	Catalytic oxidation of sulfides to sulfoxides using sodium perborate and/or sodium percarbonate and silica sulfuric acid in the presence of KBr. Catalysis Communications, 2009, 10, 1257-1260.	3.3	92
76	Microwaveâ€Induced Solventâ€free Synthesis of <i>β </i> â€Keto Esters Using Montmorillonite KSF and K10 Clays as Efficient and Recyclable Heterogeneous Solid Acids. Chinese Journal of Chemistry, 2008, 26, 522-524.	4.9	11
77	Chemical and electrochemical procedures for the synthesis of diisopropyltetrahydroquinoxalinedione derivatives. Tetrahedron Letters, 2008, 49, 5043-5046.	1.4	16
78	Editorial Retraction. Synthetic Communications, 2008, 38, 474-474.	2.1	1
79	Montmorillonite K-10 clay as reusable heterogeneous catalyst for the microwave-mediated solventless synthesis of phthalazinetetraones. Canadian Journal of Chemistry, 2007, 85, 81-84.	1.1	9
80	Montmorillonite KSF clay as an efficient catalyst for the synthesis of 1,4-dioxo-3,4-dihydrophthalazine-2(1H)-carboxamides and -carbothioamides under solvent-free conditions using microwave irradiation. Catalysis Communications, 2007, 8, 127-130.	3.3	16
81	Green Procedure for the Synthesis of Phthalazino[2,3â€b]phthalazineâ€5,7,12,14â€tetraones. Synthetic Communications, 2007, 37, 3165-3171.	2.1	9
82	Diaryl Sulfones Through Oxidative Coupling of Catechols and Arylsulfinic Acids. Phosphorus, Sulfur and Silicon and the Related Elements, 2006, 181, 1391-1396.	1.6	8
83	Synthesis of 2,5-bis(2',2'-dicarboxyethyl)thiophene Monomer and Three Heat Resistant Crosslinked Polyamides: Brief Communication. Polymers and Polymer Composites, 2006, 14, 841-844.	1.9	0
84	A facile galvanostatic method for the synthesis of quinoxalinediones. Electrochimica Acta, 2006, 52, 1234-1239.	5.2	24
85	Montmorillonite KSF and montmorillonite K-10 clays as efficient catalysts for the solventless synthesis of bismaleimides and bisphthalimides using microwave irradiation. Arkivoc, 2006, 2006, 8-15.	0.5	24
86	An efficient conversion of catechols into 6H-benzofuro[3,2-c][1]-benzopyran-6-one derivatives. Journal of Heterocyclic Chemistry, 2005, 42, 289-292.	2.6	18
87	The Use of Nafion-H® as an Efficient Catalyst for the Deprotection of Trimethylsilyl Ethers to Their Corresponding Alcohols under Mild and Heterogeneous Conditions ChemInform, 2005, 36, no-no.	0.0	0
88	An Efficient Conversion of Catechols into 6H-Benzofuro[3,2-c][1]benzopyran-6-one Derivatives ChemInform, 2005, 36, no.	0.0	0
89	3-(2,5-Bis-dodecyloxy-4-iodo-phenylethynyl)-[1,10]-phenanthroline. MolBank, 2005, 2005, M417.	0.5	0
90	3-(2,5-Bis-hexyloxy-4-iodo-phenylethynyl)-[1,10]-phenanthroline. MolBank, 2005, 2005, M418.	0.5	0

#	Article	IF	Citations
91	3-(2,5-Dibutoxy-4-iodo-phenylethynyl)-[1,10]-phenanthroline. MolBank, 2005, 2005, M419.	0.5	0
92	3-(2,5-Diethoxy-4-iodo-phenylethynyl)-[1,10]-phenanthroline. MolBank, 2005, 2005, M420.	0.5	0
93	3-(2,5-Diethyl-4-iodo-phenylethynyl)-[1,10]-phenanthroline. MolBank, 2005, 2005, M421.	0.5	O
94	3,8-Bis-trimethylsilanylethynyl-[1,10]-phenanthroline. MolBank, 2005, 2005, M423.	0.5	0
95	3,8-Diethynyl-[1,10]-phenanthroline. MolBank, 2005, 2005, M424.	0.5	1
96	3-(2,5-Bis-dodecyl-4-iodo-phenylethynyl)-[1,10]-phenanthroline. MolBank, 2005, 2005, M416.	0.5	0
97	3-(2,5-Dihexyl-4-iodo-phenylethynyl)-[1,10]-phenanthroline. MolBank, 2005, 2005, M422.	0.5	O
98	OXIDATIVE COUPLING OF IN-SITU GENERATED 0-BENZOQUINONES WITH 4-HYDROXY-6-METHYL-2-PYRONE. Heterocyclic Communications, 2005, 11 , .	1.2	7
99	Montmorillonite K-10 supported one-pot synthesis of some symmetric diimides and 3a,4,7,7a-tetrahydroisoindole-1,3-dione derivatives under solvent-free conditions using microwaves. Journal of the Serbian Chemical Society, 2005, 70, 579-583.	0.8	8
100	The Use of Nafion-H \hat{A}^{\odot} as an Efficient Catalyst for the Direct Conversion of Primary and Secondary Trimethylsilyl Ethers to Their Corresponding Ethers under Mild and Heterogeneous Conditions ChemInform, 2004, 35, no.	0.0	0
101	A Facile Electrochemical Method for Synthesis of New Benzofuran Derivatives ChemInform, 2004, 35, no.	0.0	0
102	SYNTHESIS OF THE NEW SCHIFF BASE POLYAZA MACROCYCLES AND THEIR COMPLEXES WITH Cu2+AND Ni2+. Phosphorus, Sulfur and Silicon and the Related Elements, 2004, 179, 1197-1202.	1.6	6
103	A Facile Electrochemical Method for Synthesis of New Benzofuran Derivatives. Journal of Organic Chemistry, 2004, 69, 2637-2640.	3.2	105
104	THE USE OF NAFION-H® AS AN EFFICIENT CATALYST FOR THE DEPROTECTION OF TRIMETHYLSILYL ETHERS TO THEIR CORRESPONDING ALCOHOLS UNDER MILD AND HETEROGENEOUS CONDITIONS. Phosphorus, Sulfur and Silicon and the Related Elements, 2004, 179, 2189-2193.	1.6	5
105	The Use of Nafion-H®/NaNO2 as an Efficient Procedure for the Chemoselective N-Nitrosation of Secondary Amines under Mild and Heterogeneous Conditions ChemInform, 2003, 34, no.	0.0	O
106	The use of Nafion-H® as an efficient catalyst for the direct conversion of primary and secondary trimethylsilyl ethers to their corresponding ethers under mild and heterogeneous conditions. Tetrahedron Letters, 2003, 44, 8165-8167.	1.4	39
107	The use of Nafion-H $\hat{A}^{@}$ /NaNO2 as an efficient procedure for the chemoselective N-nitrosation of secondary amines under mild and heterogeneous conditions. Tetrahedron Letters, 2003, 44, 3345-3349.	1.4	59
108	3-Ethynyl-[1,10]phenanthroline. Molecules, 2001, 6, M225.	3.8	4

DAVOOD HABIBI

#	Article	IF	CITATIONS
109	3-Trimethylsilanylethynyl-[1,10]phenanthroline. Molecules, 2001, 6, M224.	3.8	5
110	Synthesis Of Some Novel Silver-Cysteamine Complexes. Molecules, 2000, 5, 1194-1200.	3.8	8
111	A Polymeric silver(I) thiolate with diverse co-ordination numbers: [{AgSCH2CH2NMe2}5·0.5H2O]n. Polyhedron, 1999, 18, 2977-2979.	2.2	3
112	Insoluble ligands and their applications. Journal of Organometallic Chemistry, 1989, 369, 17-28.	1.8	86
113	The triazole-thiol-functionalized Mn-complex and its catalytic performance. Synthetic Communications, 0, , 1-20.	2.1	0