
## Yan Zhao

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3537977/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A Superamphiphobic Coating with an Ammoniaâ€Triggered Transition to Superhydrophilic and<br>Superoleophobic for Oil–Water Separation. Angewandte Chemie - International Edition, 2015, 54,<br>4527-4530.                                                             | 7.2 | 301       |
| 2  | A Waterborne Coating System for Preparing Robust, Selfâ€healing, Superamphiphobic Surfaces.<br>Advanced Functional Materials, 2017, 27, 1604261.                                                                                                                     | 7.8 | 273       |
| 3  | A self-roughened and biodegradable superhydrophobic coating with UV shielding, solar-induced<br>self-healing and versatile oil–water separation ability. Journal of Materials Chemistry A, 2019, 7,<br>2122-2128.                                                    | 5.2 | 205       |
| 4  | Fluorine-Free Superhydrophobic Coatings with pH-induced Wettability Transition for Controllable<br>Oil–Water Separation. ACS Applied Materials & Interfaces, 2016, 8, 5661-5667.                                                                                     | 4.0 | 195       |
| 5  | A Durable, Flexible, Largeâ€Area, Flameâ€Retardant, Early Fire Warning Sensor with Builtâ€In Patterned<br>Electrodes. Small Methods, 2021, 5, e2001040.                                                                                                              | 4.6 | 67        |
| 6  | Durable Superamphiphobic and Photocatalytic Fabrics: Tackling the Loss of Super-Non-Wettability Due to Surface Organic Contamination. ACS Applied Materials & amp; Interfaces, 2019, 11, 35327-35332.                                                                | 4.0 | 51        |
| 7  | Fabricating a pH-responsive membrane through interfacial in-situ assembly of microgels for water gating and self-cleaning. Journal of Membrane Science, 2019, 579, 230-239.                                                                                          | 4.1 | 51        |
| 8  | Recent advances in lithium-ion battery separators with reversible/irreversible thermal shutdown capability. Energy Storage Materials, 2021, 43, 143-157.                                                                                                             | 9.5 | 39        |
| 9  | Recent Development in Durable Superâ€Liquidâ€Repellent Fabrics. Advanced Materials Interfaces, 2016, 3,<br>1600402.                                                                                                                                                  | 1.9 | 38        |
| 10 | Recent Advances in Sensors for Fire Detection. Sensors, 2022, 22, 3310.                                                                                                                                                                                              | 2.1 | 36        |
| 11 | Core–Shell Structured Nanofibers for Lithium Ion Battery Separator with Wide Shutdown<br>Temperature Window and Stable Electrochemical Performance. ACS Applied Polymer Materials, 2020, 2,<br>1989-1996.                                                            | 2.0 | 31        |
| 12 | Randomly heterogeneous oleophobic/pH-responsive polymer coatings with reversible wettability<br>transition for multifunctional fabrics and controllable oil–water separation. Journal of Colloid and<br>Interface Science, 2021, 594, 122-130.                       | 5.0 | 31        |
| 13 | Underwater Mechanically Tough, Elastic, Superhydrophilic Cellulose Nanofiber-Based Aerogels for<br>Water-in-Oil Emulsion Separation and Solar Steam Generation. ACS Applied Nano Materials, 2021, 4,<br>8979-8989.                                                   | 2.4 | 31        |
| 14 | Durable superhydrophobic cotton fabrics prepared by surface-initiated electrochemically mediated ATRP of polyhedral vinylsilsesquioxane and subsequent fluorination via thiol-Michael addition reaction. Journal of Colloid and Interface Science, 2021, 593, 79-88. | 5.0 | 26        |
| 15 | Robust multifunctional superhydrophobic, photocatalytic and conductive fabrics with electro-/photo-thermal self-healing ability. Journal of Colloid and Interface Science, 2022, 614, 1-11.                                                                          | 5.0 | 25        |
| 16 | Zwitterionic Polymerâ€Grafted Superhydrophilic and Superoleophobic Silk Fabrics for Antiâ€Oil<br>Applications. Macromolecular Rapid Communications, 2020, 41, e2000162.                                                                                              | 2.0 | 24        |
| 17 | One-pot fabrication of hydrophilic-oleophobic cellulose nanofiber-silane composite aerogels for selectively absorbing water from oil–water mixtures. Cellulose, 2021, 28, 1443-1453.                                                                                 | 2.4 | 24        |
| 18 | Fabrics with Novel Air–Oil Amphibious, Spontaneous One-Way Water-Transport Capability for<br>Oil/Water Separation. ACS Applied Materials & Interfaces, 2021, 13, 29150-29157.                                                                                        | 4.0 | 24        |

Yan Zhao

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Durable superhydrophobic and antimicrobial cotton fabrics prepared by electrostatic assembly of<br>polyhexamethylene biguanide and subsequent hydrophobization. Textile Reseach Journal, 2018, 88,<br>1788-1799.                                            | 1.1 | 22        |
| 20 | Interfaceâ€Initiated Polymerization Enables Oneâ€Pot Synthesis of Hydrophilic and Oleophobic Foams through Emulsion Templating. Macromolecular Rapid Communications, 2019, 40, e1900288.                                                                    | 2.0 | 22        |
| 21 | One-step zwitterionization and quaternization of thick PDMAEMA layer grafted through subsurface-initiated ATRP for robust antibiofouling and antibacterial coating on PDMS. Journal of Colloid and Interface Science, 2022, 610, 234-245.                   | 5.0 | 22        |
| 22 | Durable superhydrophobic and oleophobic cotton fabric based on the grafting of fluorinated POSS<br>through silane coupling and thiol-ene click reaction. Colloids and Surfaces A: Physicochemical and<br>Engineering Aspects, 2021, 630, 127566.            | 2.3 | 21        |
| 23 | Cellulose-based, highly porous polyurethanes templated within non-aqueous high internal phase emulsions. Cellulose, 2020, 27, 4007-4018.                                                                                                                    | 2.4 | 20        |
| 24 | A single covalently grafted fluorolayer imparts intrinsically hydrophilic foams with simultaneous<br>oleophobicity and hydrophilicity for removing water from oils. Colloids and Surfaces A:<br>Physicochemical and Engineering Aspects, 2020, 605, 125380. | 2.3 | 19        |
| 25 | Closed-Cell, Phase Change Material-Encapsulated Monoliths from a Reactive Surfactant-Stabilized<br>High Internal Phase Emulsion for Thermal Energy Storage. ACS Applied Polymer Materials, 2020, 2,<br>2578-2585.                                           | 2.0 | 19        |
| 26 | Multifunctional Highly Oleophobic and Superhydrophilic Fabric Coatings Prepared by Facile<br>Photopolymerization. Advanced Sustainable Systems, 2020, 4, 2000049.                                                                                           | 2.7 | 18        |
| 27 | Amphiphobic polyHIPEs with pH-triggered transition to hydrophilicity–oleophobicity for the controlled removal of water from oil–water mixtures. Polymer Chemistry, 2020, 11, 6935-6943.                                                                     | 1.9 | 17        |
| 28 | Hydrophobic polyurethane polyHIPEs templated from mannitol within nonaqueous high internal phase emulsions for oil spill recovery. Journal of Polymer Science Part A, 2019, 57, 1315-1321.                                                                  | 2,5 | 16        |
| 29 | A fully waterborne coating system based on thiol-ene click reaction for robust and self-healing superhydrophobic surfaces. Chemical Engineering Journal, 2022, 447, 137499.                                                                                 | 6.6 | 16        |
| 30 | Closed-cell, phase change material-encapsulated, emulsion-templated monoliths for latent heat storage: Flexibility and rapid preparation. Applied Materials Today, 2020, 21, 100831.                                                                        | 2.3 | 14        |
| 31 | Octodecane-cellulose nanofiber flexible composites for latent heat storage. Chemical Engineering<br>Journal, 2021, 425, 131432.                                                                                                                             | 6.6 | 13        |
| 32 | Nanofibrous, hypercrosslinked polymers with multiscale pores through post-crosslinking of<br>emulsion-templated syndiotactic polystyrene aerogels. European Polymer Journal, 2020, 135, 109880.                                                             | 2.6 | 12        |
| 33 | Solvent-driven migration of highly polar monomers into hydrophobic PDMS produces a thick graft<br>layer via subsurface initiated ATRP for efficient antibiofouling. Chemical Communications, 2020, 56,<br>5030-5033.                                        | 2.2 | 10        |
| 34 | Subsurface-initiated atom transfer radical polymerization: effect of graft layer thickness and surface<br>morphology on antibiofouling properties against different foulants. Journal of Materials Science,<br>2020, 55, 14544-14557.                       | 1.7 | 7         |
| 35 | Emulsion-templated porous polymers: drying condition-dependent properties. Soft Matter, 2021, 17, 9653-9663.                                                                                                                                                | 1.2 | 7         |
| 36 | Emulsion-based, flexible and recyclable aerogel composites for latent heat storage. Journal of<br>Colloid and Interface Science, 2022, 627, 72-80.                                                                                                          | 5.0 | 7         |

Υάν Ζηάο

| #  | Article                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Wetâ€spun porous fibers from high internal phase emulsions: Continuous preparation and high stretchability. Journal of Polymer Science, 2021, 59, 1055-1064.      | 2.0 | 5         |
| 38 | Emulsion-Templated, Magnetic, Hydrophilic–Oleophobic Composites for Controlled Water Removal.<br>Langmuir, 2022, 38, 1422-1431.                                   | 1.6 | 5         |
| 39 | Microphase-separated, magnetic macroporous polymers with amphiphilic swelling from emulsion templating. Polymer Chemistry, 2022, 13, 1090-1097.                   | 1.9 | 4         |
| 40 | Non-Fluorine Oil Repellency: How Low the Intrinsic Wetting Threshold Can Be for Roughness-Induced<br>Contact Angle Amplification?. Langmuir, 2022, 38, 5857-5864. | 1.6 | 4         |
| 41 | Emulsion-templated, hydrophilic-oleophobic aerogels with flexibility, stretchability and recyclability.<br>Polymer, 2022, 250, 124886.                            | 1.8 | 4         |