ĽuboÅ; KriÅ;Å¥Ã;k

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3537638/publications.pdf

Version: 2024-02-01

57 papers 1,158 citations

³⁹⁴⁴²¹ 19 h-index 30 g-index

58 all docs 58 docs citations

58 times ranked 509 citing authors

#	Article	IF	Citations
1	Recent progress in ultra-low formaldehyde emitting adhesive systems and formaldehyde scavengers in wood-based panels: a review. Wood Material Science and Engineering, 2023, 18, 763-782.	2.3	80
2	Utilization of Birch Bark as an Eco-Friendly Filler in Urea-Formaldehyde Adhesives for Plywood Manufacturing. Polymers, 2021, 13, 511.	4.5	59
3	Properties of Eco-Friendly Particleboards Bonded with Lignosulfonate-Urea-Formaldehyde Adhesives and pMDI as a Crosslinker. Materials, 2021, 14, 4875.	2.9	50
4	Recent developments in lignin modification and its application in ligninâ€based green composites: A review. Polymer Composites, 2022, 43, 4848-4865.	4.6	50
5	Functionality of Beech Bark in Adhesive Mixtures Used in Plywood and Its Effect on the Stability Associated with Material Systems. Materials, 2019, 12, 1298.	2.9	49
6	Recent Advances in the Development of Fire-Resistant Biocomposites—A Review. Polymers, 2022, 14, 362.	4.5	47
7	Properties of High-Density Fiberboard Bonded with Urea–Formaldehyde Resin and Ammonium Lignosulfonate as a Bio-Based Additive. Polymers, 2021, 13, 2775.	4.5	45
8	Occupational Exposure to Dust Produced when Milling Thermally Modified Wood. International Journal of Environmental Research and Public Health, 2020, 17, 1478.	2.6	44
9	Eco-Friendly, High-Density Fiberboards Bonded with Urea-Formaldehyde and Ammonium Lignosulfonate. Polymers, 2021, 13, 220.	4.5	43
10	Eco-Friendly Fiberboard Panels from Recycled Fibers Bonded with Calcium Lignosulfonate. Polymers, 2021, 13, 639.	4.5	40
11	Sound-Absorption Coefficient of Bark-Based Insulation Panels. Polymers, 2020, 12, 1012.	4.5	39
12	Analysis of Larch-Bark Capacity for Formaldehyde Removal in Wood Adhesives. International Journal of Environmental Research and Public Health, 2020, 17, 764.	2.6	39
13	Creation of Wood Dust during Wood Processing: Size Analysis, Dust Separation, and Occupational Health. BioResources, 2015, 11 , .	1.0	29
14	Development of students' conceptual thinking by means of video analysis and interactive simulations at technical universities. European Journal of Engineering Education, 2015, 40, 145-166.	2.3	28
15	Granulometric Analysis of Sanding Dust from Selected Wood Species. BioResources, 2018, 13, .	1.0	26
16	Influence of Urea-formaldehyde Adhesive Modification with Beech Bark on Chosen Properties of Plywood. BioResources, 2017, 12, .	1.0	24
17	Enhanced Resistance to Fire of the Bark-Based Panels Bonded with Clay. Applied Sciences (Switzerland), 2020, 10, 5594.	2.5	23
18	Engineering Wood Products from Eucalyptus spp Advances in Materials Science and Engineering, 2022, 2022, 1-14.	1.8	22

#	Article	IF	CITATIONS
19	Influence of Lignin Content and Pressing Time on Plywood Properties Bonded with Cold-Setting Adhesive Based on Poly (Vinyl Alcohol), Lignin, and Hexamine. Polymers, 2022, 14, 2111.	4.5	21
20	Methodology of Temperature Monitoring in the Process of CNC Machining of Solid Wood. Sustainability, 2019, 11, 95.	3.2	20
21	Thermophysical properties of OSB boards versus equilibrium moisture content. BioResources, 2017, 12, 8106-8118.	1.0	20
22	Construction of Wood-Based Lamella for Increased Load on Seating Furniture. Forests, 2019, 10, 525.	2.1	19
23	Physical and Mechanical Properties of Particleboard Produced with Addition of Walnut (Juglans regia) Tj ETQq $1\ 1$	0.784314	rgBT /Overl
24	Thermophysical Properties of Larch Bark Composite Panels. Polymers, 2021, 13, 2287.	4.5	17
25	Thermal and mechanical performance of ramie fibers modified with polyurethane resins derived from acacia mangium bark tannin. Journal of Materials Research and Technology, 2022, 18, 2413-2427.	5.8	17
26	Modification of Ramie Fiber via Impregnation with Low Viscosity Bio-Polyurethane Resins Derived from Lignin. Polymers, 2022, 14, 2165.	4.5	17
27	Fine Dust Creation during Hardwood Machine Sanding. Applied Sciences (Switzerland), 2021, 11, 6602.	2.5	16
28	Efficiency of Sanding Belts for Beech and Oak Sanding. BioResources, 2016, 11, .	1.0	15
29	Acoustic Properties of Larch Bark Panels. Forests, 2021, 12, 887.	2.1	15
30	Optimization of Parameters for the Cutting of Wood-Based Materials by a CO2 Laser. Applied Sciences (Switzerland), 2020, 10, 8113.	2.5	14
31	Granulometric Characterization of Wood Dust Emission from CNC Machining of Natural Wood and Medium Density Fiberboard. Forests, 2021, 12, 1039.	2.1	14
32	Load-carrying capacity and the size of chair joints determined for users with a higher body weight. BioResources, 2018, 13, 6428-6443.	1.0	14
33	Effect of oxidizing thermal modification on the chemical properties and thermal conductivity of Norway spruce (<i>Picea abies</i> L.) wood. Wood Material Science and Engineering, 2022, 17, 366-375.	2.3	14
34	The Granularity of Dust Particles when Sanding Wood and Wood-Based Materials. Advanced Materials Research, 0, 1001, 432-437.	0.3	13
35	Suitability of Wooden Shingles for Ventilated Roofs: An Evaluation of Ventilation Efficiency. Applied Sciences (Switzerland), 2020, 10, 6499.	2.5	13
36	Interactive Methods of Teaching Physics at Technical Universities. Informatics in Education, 2014, 13, 51-71.	2,2	13

#	Article	IF	CITATIONS
37	Applying the EDPS Method to the Research into Thermophysical Properties of Solid Wood of Coniferous Trees. Advances in Materials Science and Engineering, 2019, 2019, 1-9.	1.8	11
38	Analysis to Improve the Strength of Beds Due to the Excess Weight of Users in Slovakia. Sustainability, 2019, 11, 624.	3.2	10
39	Application of Wood Composites. Applied Sciences (Switzerland), 2021, 11, 3479.	2.5	10
40	New Challenges in Wood and Wood-Based Materials. Polymers, 2021, 13, 2538.	4.5	10
41	Characterisation of Wood Particles Used in the Particleboard Production as a Function of Their Moisture Content. Materials, 2022, 15, 48.	2.9	10
42	Structural Application of Lightweight Panels Made of Waste Cardboard and Beech Veneer. Materials, 2021, 14, 5064.	2.9	9
43	A review on Lantana camara lignocellulose fiber-reinforced polymer composites. Biomass Conversion and Biorefinery, 2024, 14, 1495-1513.	4.6	8
44	Oversized Planer Shavings for the Core Layer of Lightweight Particleboard. Polymers, 2021, 13, 1125.	4.5	7
45	Effect of moisture content on the load carrying capacity and stiffness of corner wood-based and plastic joints. BioResources, 2019, 14, 8640-8655.	1.0	7
46	Life Cycle Assessment of Timber Formwork: Case Study. Advanced Materials Research, 0, 1001, 155-161.	0.3	6
47	Heat Transfer during Pressing of 3D Moulded Veneer Plywood Composite Materials. Key Engineering Materials, 0, 688, 131-137.	0.4	6
48	Investigation of 3D-Moldability of Flax Fiber Reinforced Beech Plywood. Polymers, 2020, 12, 2852.	4.5	6
49	Application of Innovative P& amp; E Method at Technical Universities in Slovakia. Eurasia Journal of Mathematics, Science and Technology Education, 2017, 13, .	1.3	6
50	Quantifying the finest particles in dust fractions created during the sanding of untreated and thermally modified beech wood. BioResources, 2022, 17, 7-20.	1.0	6
51	Effect of cutting conditions on quality of milled surface of medium-density fibreboards. BioResources, 2020, 15, 746-766.	1.0	5
52	INNOVATION OF PHYSICAL EDUCATION AT TECHNICAL UNIVERSITY IN ZVOLEN Journal of Technology and Information Education, 2010, 2, 40-45.	0.1	4
53	INTERACTIVE P&E METHOD IN TEACHING PHYSICS AT SECONDARY SCHOOLS. Journal of Technology and Information Education, 2013, 5, 42-49.	0.1	3
54	Experimentálna podpora vo vyuÄovanÃ-fyziky na základných Å¡kolách. Scientia in Educatione, 2013, 4, .	0.2	2

ĽuboÅi KriÅiÅ¥Ãiĸ

#	Article	IF	CITATIONS
55	EFFECTS OF HOT PRESSING PARAMETERS ON THE PROPERTIES OF HARDBOARDS PRODUCED FROM MIXED HARDWOOD TREE SPECIES. Wood Research, 2021, 66, 437-448.	0.6	1
56	The Study of Temperature vs Time Dependence on the Irradiated Surface Side during Wood Burning Process. Key Engineering Materials, 2016, 688, 145-152.	0.4	0
57	Measurements of rubber mechanical properties in aged and nonaged state. Materialwissenschaft Und Werkstofftechnik, 2017, 48, 358-363.	0.9	0