

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3537222/publications.pdf Version: 2024-02-01

		263	1003
723	73,153	141	236
papers	citations	h-index	g-index
744	744	744	49312
all docs	docs citations	times ranked	citing authors

C X WANC

#	Article	IF	CITATIONS
1	Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability. Science, 2007, 315, 493-497.	6.0	3,924
2	Facile Synthesis and Characterization of Graphene Nanosheets. Journal of Physical Chemistry C, 2008, 112, 8192-8195.	1.5	1,894
3	Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon, 2009, 47, 2049-2053.	5.4	1,281
4	Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nature Catalysis, 2018, 1, 985-992.	16.1	1,236
5	Super Plastic Bulk Metallic Glasses at Room Temperature. Science, 2007, 315, 1385-1388.	6.0	1,033
6	Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects. CheM, 2019, 5, 2326-2352.	5.8	801
7	Hollow MXene Spheres and 3D Macroporous MXene Frameworks for Naâ€ l on Storage. Advanced Materials, 2017, 29, 1702410.	11.1	757
8	Preparation and Electrochemical Properties of SnO2 Nanowires for Application in Lithium-Ion Batteries. Angewandte Chemie - International Edition, 2007, 46, 750-753.	7.2	756
9	Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy, 2016, 26, 513-523.	8.2	710
10	Tuning the Coordination Environment in Single-Atom Catalysts to Achieve Highly Efficient Oxygen Reduction Reactions. Journal of the American Chemical Society, 2019, 141, 20118-20126.	6.6	683
11	MoS ₂ /Graphene Composite Anodes with Enhanced Performance for Sodiumâ€ion Batteries: The Role of the Twoâ€Dimensional Heterointerface. Advanced Functional Materials, 2015, 25, 1393-1403.	7.8	657
12	Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation. Applied Catalysis B: Environmental, 2016, 188, 98-105.	10.8	570
13	Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon, 2009, 47, 1359-1364.	5.4	565
14	Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. Journal of Materials Chemistry, 2009, 19, 8378.	6.7	523
15	In situ chemical synthesis of SnO2–graphene nanocomposite as anode materials for lithium-ion batteries. Electrochemistry Communications, 2009, 11, 1849-1852.	2.3	520
16	Graphitic Carbon Conformal Coating of Mesoporous TiO ₂ Hollow Spheres for High-Performance Lithium Ion Battery Anodes. Journal of the American Chemical Society, 2015, 137, 13161-13166.	6.6	518
17	Highâ€Capacity Aqueous Potassiumâ€lon Batteries for Largeâ€Scale Energy Storage. Advanced Materials, 2017, 29, 1604007.	11.1	494
18	Facile Synthesis of Crumpled Nitrogenâ€Doped MXene Nanosheets as a New Sulfur Host for Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1702485.	10.2	488

#	Article	IF	CITATIONS
19	MXene (Ti ₃ C ₂) Vacancy-Confined Single-Atom Catalyst for Efficient Functionalization of CO ₂ . Journal of the American Chemical Society, 2019, 141, 4086-4093.	6.6	479
20	Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. Journal of Materials Chemistry, 2011, 21, 3046.	6.7	456
21	Highly Ordered Mesoporous MoS ₂ with Expanded Spacing of the (002) Crystal Plane for Ultrafast Lithium Ion Storage. Advanced Energy Materials, 2012, 2, 970-975.	10.2	455
22	Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method. Carbon, 2009, 47, 68-72.	5.4	446
23	MoS ₂ Nanosheets Vertically Aligned on Carbon Paper: A Freestanding Electrode for Highly Reversible Sodiumâ€ion Batteries. Advanced Energy Materials, 2016, 6, 1502161.	10.2	444
24	"Superaerophobic―Nickel Phosphide Nanoarray Catalyst for Efficient Hydrogen Evolution at Ultrahigh Current Densities. Journal of the American Chemical Society, 2019, 141, 7537-7543.	6.6	401
25	Nanoengineering of 2D MXeneâ€Based Materials for Energy Storage Applications. Small, 2021, 17, e1902085.	5.2	398
26	3D Porous Copper Skeleton Supported Zinc Anode toward High Capacity and Long Cycle Life Zinc Ion Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 3364-3371.	3.2	387
27	Robust optical emission polarization in MoS < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:msub> < mml:mrow /> < mml:mn>2 < /mml:mn> < /mml:msub> < /mml:math> monolayers through selective valley excitation. Physical Review B. 2012. 86	1.1	385
28	Mesoporous LiFePO ₄ /C Nanocomposite Cathode Materials for High Power Lithium Ion Batteries with Superior Performance. Advanced Materials, 2010, 22, 4944-4948.	11.1	380
29	Hydrothermal Synthesis and Optical, Magnetic, and Supercapacitance Properties of Nanoporous Cobalt Oxide Nanorods. Journal of Physical Chemistry C, 2009, 113, 4357-4361.	1.5	374
30	A room-temperature sodium–sulfur battery with high capacity and stable cycling performance. Nature Communications, 2018, 9, 3870.	5.8	367
31	Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>. Physical Review B, 2013, 88, .</mml:math 	1.1	365
32	Unveiling the active sites of graphene-catalyzed peroxymonosulfate activation. Carbon, 2016, 107, 371-378.	5.4	359
33	Advances in Lithium–Sulfur Batteries: From Academic Research to Commercial Viability. Advanced Materials, 2021, 33, e2003666.	11.1	357
34	Promoting lithium polysulfide/sulfide redox kinetics by the catalyzing of zinc sulfide for high performance lithium-sulfur battery. Nano Energy, 2018, 51, 73-82.	8.2	350
35	Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world. Nanoscale, 2014, 6, 5754-5761.	2.8	347
36	Ultrathin MoS ₂ Nanosheets as Anode Materials for Sodiumâ€ion Batteries with Superior Performance. Advanced Energy Materials, 2015, 5, 1401205.	10.2	341

#	Article	IF	CITATIONS
37	2D Metal Carbides and Nitrides (MXenes) as Highâ€Performance Electrode Materials for Lithiumâ€Based Batteries. Advanced Energy Materials, 2018, 8, 1801897.	10.2	341
38	SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chemical Communications, 2013, 49, 3131.	2.2	332
39	Porous Graphene Nanoarchitectures: An Efficient Catalyst for Low Charge-Overpotential, Long Life, and High Capacity Lithium–Oxygen Batteries. Nano Letters, 2014, 14, 3145-3152.	4.5	329
40	Single-Crystalline Bilayered V ₂ O ₅ Nanobelts for High-Capacity Sodium-Ion Batteries. ACS Nano, 2013, 7, 11218-11226.	7.3	326
41	Porous Cryo-Dried MXene for Efficient Capacitive Deionization. Joule, 2018, 2, 778-787.	11.7	326
42	Cobalt-Based Layered Metal–Organic Framework as an Ultrahigh Capacity Supercapacitor Electrode Material. ACS Applied Materials & Interfaces, 2016, 8, 4585-4591.	4.0	323
43	Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon, 2009, 47, 3242-3246.	5.4	322
44	Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries. Journal of Power Sources, 2006, 159, 254-257.	4.0	312
45	Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. Journal of Materials Chemistry A, 2019, 7, 13810-13832.	5.2	312
46	Synthesis of Mesoporous α-Fe ₂ O ₃ Nanostructures for Highly Sensitive Gas Sensors and High Capacity Anode Materials in Lithium Ion Batteries. Journal of Physical Chemistry C, 2010, 114, 18753-18761.	1.5	311
47	The Effect of Morphological Modification on the Electrochemical Properties of SnO ₂ Nanomaterials. Advanced Functional Materials, 2008, 18, 455-461.	7.8	306
48	Fabrication of Nâ€doped Graphene–Carbon Nanotube Hybrids from Prussian Blue for Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1602014.	10.2	304
49	MnO/C core–shell nanorods as high capacity anode materials for lithium-ion batteries. Journal of Power Sources, 2011, 196, 3346-3349.	4.0	303
50	Deepâ€Eutecticâ€Solventâ€Based Selfâ€Healing Polymer Electrolyte for Safe and Longâ€Life Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 9134-9142.	7.2	292
51	Anatase TiO ₂ : Better Anode Material Than Amorphous and Rutile Phases of TiO ₂ for Na-Ion Batteries. Chemistry of Materials, 2015, 27, 6022-6029.	3.2	279
52	Dendriteâ€Free Sodiumâ€Metal Anodes for Highâ€Energy Sodiumâ€Metal Batteries. Advanced Materials, 2018, 30, e1801334.	11.1	267
53	MOF-derived porous N–Co ₃ O ₄ @N–C nanododecahedra wrapped with reduced graphene oxide as a high capacity cathode for lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 2797-2807.	5.2	266
54	Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries. Electrochimica Acta, 2006, 51, 4634-4638.	2.6	265

#	Article	IF	CITATIONS
55	Single wall carbon nanotube paper as anode for lithium-ion battery. Electrochimica Acta, 2005, 51, 23-28.	2.6	263
56	Porous Carbon Composites for Next Generation Rechargeable Lithium Batteries. Advanced Energy Materials, 2017, 7, 1700283.	10.2	263
57	Insights into N-doping in single-walled carbon nanotubes for enhanced activation of superoxides: a mechanistic study. Chemical Communications, 2015, 51, 15249-15252.	2.2	259
58	Bismuth: A new anode for the Na-ion battery. Nano Energy, 2015, 12, 88-95.	8.2	251
59	Nanostructured Si–C composite anodes for lithium-ion batteries. Electrochemistry Communications, 2004, 6, 689-692.	2.3	246
60	Sb ₂ O ₃ /MXene(Ti ₃ C ₂ T _x) hybrid anode materials with enhanced performance for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 12445-12452.	5.2	245
61	MXeneâ€Based Dendriteâ€Free Potassium Metal Batteries. Advanced Materials, 2020, 32, e1906739.	11.1	244
62	An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries. Electrochimica Acta, 2005, 50, 4649-4654.	2.6	241
63	Magnetite/carbon core-shell nanorods as anode materials for lithium-ion batteries. Electrochemistry Communications, 2008, 10, 1879-1882.	2.3	239
64	Chemical synthesis, characterisation and gas sensing performance of copper oxide nanoribbons. Journal of Materials Chemistry, 2008, 18, 965.	6.7	238
65	Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance. Carbon, 2012, 50, 727-733.	5.4	238
66	Graphene-Co3O4 nanocomposite as electrocatalyst with high performance for oxygen evolution reaction. Scientific Reports, 2015, 5, 7629.	1.6	234
67	Immobilizing Polysulfides with MXene-Functionalized Separators for Stable Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2016, 8, 29427-29433.	4.0	234
68	SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries. Electrochemistry Communications, 2013, 29, 8-11.	2.3	232
69	Mn3O4 nanoparticles embedded into graphene nanosheets: Preparation, characterization, and electrochemical properties for supercapacitors. Electrochimica Acta, 2010, 55, 6812-6817.	2.6	231
70	Improved Electrochemical Performance of Naâ€ion Batteries in Etherâ€Based Electrolytes: A Case Study of ZnS Nanospheres. Advanced Energy Materials, 2016, 6, 1501785.	10.2	229
71	Naâ€lon Batteries—Approaching Old and New Challenges. Advanced Energy Materials, 2020, 10, 2002055.	10.2	229
72	Synthesis and Characterization of Rutile SnO2 Nanorods. Advanced Materials, 2001, 13, 1883.	11.1	227

#	Article	IF	CITATIONS
73	Electrochemical performance of α-Fe2O3 nanorods as anode material for lithium-ion cells. Electrochimica Acta, 2009, 54, 1733-1736.	2.6	226
74	Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 6507-6513.	5.2	226
75	WS2@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances. Chemical Communications, 2014, 50, 4192.	2.2	224
76	Boosting Performance of Na–S Batteries Using Sulfur-Doped Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets with a Strong Affinity to Sodium Polysulfides. ACS Nano, 2019, 13, 11500-11509.	7.3	220
77	Edge-Functionalized g-C3N4 Nanosheets as a Highly Efficient Metal-free Photocatalyst for Safe Drinking Water. CheM, 2019, 5, 664-680.	5.8	219
78	Nitrogenâ€Doped Porous Carbon Supported Nonprecious Metal Singleâ€Atom Electrocatalysts: from Synthesis to Application. Small Methods, 2019, 3, 1900159.	4.6	218
79	Hydrothermal synthesis of α-MnO2 and β-MnO2 nanorods as high capacity cathode materials for sodium ion batteries. Journal of Materials Chemistry A, 2013, 1, 4845.	5.2	215
80	MXeneâ€Based Composites: Synthesis and Applications in Rechargeable Batteries and Supercapacitors. Advanced Materials Interfaces, 2019, 6, 1802004.	1.9	214
81	Tensile tests of ropes of very long aligned multiwall carbon nanotubes. Applied Physics Letters, 1999, 74, 3152-3154.	1.5	213
82	Discharge mechanism of MoS2 for sodium ion battery: Electrochemical measurements and characterization. Electrochimica Acta, 2013, 92, 427-432.	2.6	213
83	Co-estimation of state-of-charge, capacity and resistance for lithium-ion batteries based on a high-fidelity electrochemical model. Applied Energy, 2016, 180, 424-434.	5.1	213
84	Electrode Materials for Sodium-Ion Batteries: Considerations on Crystal Structures and Sodium Storage Mechanisms. Electrochemical Energy Reviews, 2018, 1, 200-237.	13.1	213
85	Co–Fe Mixed Metal Phosphide Nanocubes with Highly Interconnected-Pore Architecture as an Efficient Polysulfide Mediator for Lithium–Sulfur Batteries. ACS Nano, 2019, 13, 4731-4741.	7.3	212
86	3D Metal Carbide@Mesoporous Carbon Hybrid Architecture as a New Polysulfide Reservoir for Lithiumâ€ S ulfur Batteries. Advanced Functional Materials, 2016, 26, 8746-8756.	7.8	210
87	Solvothermal synthesis of CoS2–graphene nanocomposite material for high-performance supercapacitors. Journal of Materials Chemistry, 2012, 22, 15750.	6.7	205
88	Updated Metal Compounds (MOFs, S, OH, N, C) Used as Cathode Materials for Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1702607.	10.2	202
89	Single Crystalline Co3O4 Nanocrystals Exposed with Different Crystal Planes for Li-O2 Batteries. Scientific Reports, 2014, 4, 5767.	1.6	201
90	Single Crystalline Na _{0.7} MnO ₂ Nanoplates as Cathode Materials for Sodiumâ€ion Batteries with Enhanced Performance. Chemistry - A European Journal, 2013, 19, 10884-10889.	1.7	194

#	Article	IF	CITATIONS
91	Interface Modulation of Two-Dimensional Superlattices for Efficient Overall Water Splitting. Nano Letters, 2019, 19, 4518-4526.	4.5	191
92	Manganese-Based Layered Coordination Polymer: Synthesis, Structural Characterization, Magnetic Property, and Electrochemical Performance in Lithium-Ion Batteries. Inorganic Chemistry, 2013, 52, 2817-2822.	1.9	188
93	Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries. Energy, 2018, 150, 759-769.	4.5	188
94	Flexible and conductive scaffold-stabilized zinc metal anodes for ultralong-life zinc-ion batteries and zinc-ion hybrid capacitors. Chemical Engineering Journal, 2020, 384, 123355.	6.6	188
95	Highly Porous NiCo ₂ O ₄ Nanoflakes and Nanobelts as Anode Materials for Lithium-Ion Batteries with Excellent Rate Capability. ACS Applied Materials & Interfaces, 2014, 6, 14827-14835.	4.0	187
96	High-power lithium–selenium batteries enabled by atomic cobalt electrocatalyst in hollow carbon cathode. Nature Communications, 2020, 11, 5025.	5.8	187
97	An ordered mesoporous WS2 anode material with superior electrochemical performance for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 17437.	6.7	186
98	Solvothermal synthesis and gas-sensing performance of Co3O4 hollow nanospheres. Sensors and Actuators B: Chemical, 2009, 136, 494-498.	4.0	185
99	Sn@CNT nanopillars grown perpendicularly on carbon paper: A novel free-standing anode for sodium ion batteries. Nano Energy, 2015, 13, 208-217.	8.2	185
100	Mesoporous MnCo ₂ O ₄ with a Flakeâ€Like Structure as Advanced Electrode Materials for Lithiumâ€Ion Batteries and Supercapacitors. Chemistry - A European Journal, 2015, 21, 1526-1532.	1.7	183
101	Investigation of cobalt oxides as anode materials for Li-ion batteries. Journal of Power Sources, 2002, 109, 142-147.	4.0	182
102	Cobalt-doped MnO2 ultrathin nanosheets with abundant oxygen vacancies supported on functionalized carbon nanofibers for efficient oxygen evolution. Nano Energy, 2018, 54, 129-137.	8.2	182
103	Temperatureâ€Dependent Nucleation and Growth of Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie - International Edition, 2019, 58, 11364-11368.	7.2	182
104	A simple wet-chemical synthesis and characterization of CuO nanorods. Applied Physics A: Materials Science and Processing, 2003, 76, 417-420.	1.1	181
105	A Stable Quasiâ€Solidâ€State Sodium–Sulfur Battery. Angewandte Chemie - International Edition, 2018, 57, 10168-10172.	7.2	178
106	Design Strategies to Enable the Efficient Use of Sodium Metal Anodes in Highâ€Energy Batteries. Advanced Materials, 2020, 32, e1903891.	11.1	173
107	Revitalising sodium–sulfur batteries for non-high-temperature operation: a crucial review. Energy and Environmental Science, 2020, 13, 3848-3879.	15.6	172
108	Discharge reaction mechanism of room-temperature sodium–sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte. Journal of Power Sources, 2011, 196, 5186-5190.	4.0	171

#	Article	IF	CITATIONS
109	Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source. Materials Letters, 2004, 58, 1788-1791.	1.3	170
110	Prussian Blue Nanocubes with an Open Framework Structure Coated with PEDOT as High apacity Cathodes for Lithium–Sulfur Batteries. Advanced Materials, 2017, 29, 1700587.	11.1	170
111	Reaction Mechanisms of Layered Lithiumâ€Rich Cathode Materials for Highâ€Energy Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 2208-2220.	7.2	170
112	Microwave-assisted Synthesis of Mesoporous Co ₃ O ₄ Nanoflakes for Applications in Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Interfaces, 2015, 7, 3306-3313.	4.0	169
113	Confined Sulfur in 3 D MXene/Reduced Graphene Oxide Hybrid Nanosheets for Lithium–Sulfur Battery. Chemistry - A European Journal, 2017, 23, 12613-12619.	1.7	167
114	Stable Conversion Chemistryâ€Based Lithium Metal Batteries Enabled by Hierarchical Multifunctional Polymer Electrolytes with Nearâ€5ingle Ion Conduction. Angewandte Chemie - International Edition, 2019, 58, 6001-6006.	7.2	167
115	SnS ₂ Nanoplatelet@Graphene Nanocomposites as Highâ€Capacity Anode Materials for Sodiumâ€lon Batteries. Chemistry - an Asian Journal, 2014, 9, 1611-1617.	1.7	166
116	Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. Scientific Reports, 2014, 4, 6007.	1.6	165
117	Surface-tailored nanodiamonds as excellent metal-free catalysts for organic oxidation. Carbon, 2016, 103, 404-411.	5.4	164
118	Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance. Nano Research, 2014, 7, 85-94.	5.8	163
119	Functional MXene Materials: Progress of Their Applications. Chemistry - an Asian Journal, 2018, 13, 2742-2757.	1.7	162
120	An electrochemical sensor on the hierarchically porous Cu-BTC MOF platform for glyphosate determination. Sensors and Actuators B: Chemical, 2019, 283, 487-494.	4.0	162
121	Mesoporous NiO crystals with dominantly exposed {110} reactive facets for ultrafast lithium storage. Scientific Reports, 2012, 2, 924.	1.6	160
122	In situ synthesis of Co3O4/graphene nanocomposite material for lithium-ion batteries and supercapacitors with high capacity and supercapacitance. Journal of Alloys and Compounds, 2011, 509, 7778-7783.	2.8	159
123	Ruthenium nanocrystals as cathode catalysts for lithium-oxygen batteries with a superior performance. Scientific Reports, 2013, 3, 2247.	1.6	158
124	The 2021 battery technology roadmap. Journal Physics D: Applied Physics, 2021, 54, 183001.	1.3	158
125	Nanostructured SnSb/Carbon Nanotube Composites Synthesized by Reductive Precipitation for Lithium-Ion Batteries. Chemistry of Materials, 2007, 19, 2406-2410.	3.2	157
126	Naturally nitrogen doped porous carbon derived from waste shrimp shells for high-performance lithium ion batteries and supercapacitors. Microporous and Mesoporous Materials, 2017, 246, 72-80.	2.2	156

#	Article	IF	CITATIONS
127	Nanoscale Periodic Morphologies on the Fracture Surface of Brittle Metallic Glasses. Physical Review Letters, 2007, 98, 235501.	2.9	155
128	Mesoporous Carbon Nanocube Architecture for Highâ€Performance Lithium–Oxygen Batteries. Advanced Functional Materials, 2015, 25, 4436-4444.	7.8	155
129	Boosting Sodium Storage in Two-Dimensional Phosphorene/Ti ₃ C ₂ T _{<i>x</i>} MXene Nanoarchitectures with Stable Fluorinated Interphase. ACS Nano, 2020, 14, 3651-3659.	7.3	155
130	3D Hyperbranched Hollow Carbon Nanorod Architectures for Highâ€Performance Lithium‣ulfur Batteries. Advanced Energy Materials, 2014, 4, 1301761.	10.2	154
131	Li / Li1 + x  V 3 O 8 Secondary Batteries: Synthesis and Characterization of a Cathode. Journal of the Electrochemical Society, 1990, 137, 2365-2370.	n Amorph 1.3	ous Form of
132	Hierarchical orthorhombic V2O5 hollow nanospheres as high performance cathode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 11185.	5.2	153
133	Synthesis of vanadium pentoxide powders with enhanced surface-area for electrochemical capacitors. Journal of Power Sources, 2006, 162, 1451-1454.	4.0	152
134	Highly ordered mesoporous Cr ₂ O ₃ materials with enhanced performance for gas sensors and lithium ion batteries. Chemical Communications, 2012, 48, 865-867.	2.2	152
135	Towards high-energy-density lithium-ion batteries: Strategies for developing high-capacity lithium-rich cathode materials. Energy Storage Materials, 2021, 34, 716-734.	9.5	149
136	Growth of SnO 2 nanowires with uniform branched structures. Solid State Communications, 2004, 130, 89-94.	0.9	148
137	Monodisperse hematite porous nanospheres: synthesis, characterization, and applications for gas sensors. Nanotechnology, 2008, 19, 125606.	1.3	147
138	Redoxâ€Active Organic Sodium Anthraquinoneâ€2â€5ulfonate (AQS) Anchored on Reduced Graphene Oxide for Highâ€Performance Supercapacitors. Advanced Energy Materials, 2018, 8, 1802088.	10.2	147
139	Advanced mechanical properties of graphene paper. Journal of Applied Physics, 2011, 109, .	1.1	146
140	Recent advances in understanding dendrite growth on alkali metal anodes. EnergyChem, 2019, 1, 100003.	10.1	146
141	Flutelike Porous Hematite Nanorods and Branched Nanostructures: Synthesis, Characterisation and Application for Gas ensing. Chemistry - A European Journal, 2008, 14, 5996-6002.	1.7	144
142	Current Progress on Rechargeable Magnesium–Air Battery. Advanced Energy Materials, 2017, 7, 1700869.	10.2	144
143	Facile Synthesis and Characterization of Iron Oxide Semiconductor Nanowires for Gas Sensing Application. Journal of Physical Chemistry C, 2008, 112, 15220-15225.	1.5	143
144	Hollow CoFe ₂ O ₄ nanospheres as a high capacity anode material for lithium ion batteries. Nanotechnology, 2012, 23, 055402.	1.3	140

#	Article	IF	CITATIONS
145	Cu ₂ O Decorated with Cocatalyst MoS ₂ for Solar Hydrogen Production with Enhanced Efficiency under Visible Light. Journal of Physical Chemistry C, 2014, 118, 14238-14245.	1.5	138
146	A versatile functionalized ionic liquid to boost the solution-mediated performances of lithium-oxygen batteries. Nature Communications, 2019, 10, 602.	5.8	138
147	Quasi-Solid-State Dual-Ion Sodium Metal Batteries for Low-Cost Energy Storage. CheM, 2020, 6, 902-918.	5.8	137
148	<i>In Situ</i> Construction of Protective Films on Zn Metal Anodes <i>via</i> Natural Protein Additives Enabling High-Performance Zinc Ion Batteries. ACS Nano, 2022, 16, 11392-11404.	7.3	137
149	Highly Ordered Mesoporous Cobalt Oxide Nanostructures: Synthesis, Characterisation, Magnetic Properties, and Applications for Electrochemical Energy Devices. Chemistry - A European Journal, 2010, 16, 11020-11027.	1.7	136
150	Strain engineering of two-dimensional multilayered heterostructures for beyond-lithium-based rechargeable batteries. Nature Communications, 2020, 11, 3297.	5.8	134
151	Mesoporous Nickel Oxide Nanowires: Hydrothermal Synthesis, Characterisation and Applications for Lithiumâ€lon Batteries and Supercapacitors with Superior Performance. Chemistry - A European Journal, 2012, 18, 8224-8229.	1.7	133
152	A nitrogen–sulfur co-doped porous graphene matrix as a sulfur immobilizer for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 17381-17393.	5.2	133
153	Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium–sulfur batteries with long cycle life. Nano Energy, 2015, 16, 268-280.	8.2	132
154	Nitrogenâ€Doped Porous Carbon Nanosheets from Ecoâ€Friendly Eucalyptus Leaves as High Performance Electrode Materials for Supercapacitors and Lithium Ion Batteries. Chemistry - A European Journal, 2017, 23, 3683-3690.	1.7	132
155	Porous Ti ₃ C ₂ T _{<i>x</i>} MXene for Ultrahigh-Rate Sodium-Ion Storage with Long Cycle Life. ACS Applied Nano Materials, 2018, 1, 505-511.	2.4	132
156	Recent Advances in Rechargeable Magnesiumâ€Based Batteries for Highâ€Efficiency Energy Storage. Advanced Energy Materials, 2020, 10, 1903591.	10.2	132
157	Spinel Li[Li1/3Ti5/3]O4 as an anode material for lithium ion batteries. Journal of Power Sources, 1999, 83, 156-161.	4.0	131
158	Direct Synthesis of a Macroscale Single-Walled Carbon Nanotube Non-Woven Material. Advanced Materials, 2004, 16, 1529-1534.	11.1	131
159	A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO ₂ /graphene for sodium-ion batteries. Nanoscale, 2015, 7, 3164-3172.	2.8	130
160	Immunizing lithium metal anodes against dendrite growth using protein molecules to achieve high energy batteries. Nature Communications, 2020, 11, 5429.	5.8	129
161	Nanoparticle-dispersed PEO polymer electrolytes for Li batteries. Journal of Power Sources, 2003, 119-121, 422-426.	4.0	127
162	Nanomaterials for Lithium-ion Rechargeable Batteries. Journal of Nanoscience and Nanotechnology, 2006, 6, 1-15.	0.9	127

#	Article	IF	CITATIONS
163	Nonâ€Flammable Liquid and Quasiâ€Solid Electrolytes toward Highlyâ€Safe Alkali Metalâ€Based Batteries. Advanced Functional Materials, 2021, 31, 2008644.	7.8	127
164	Stable Hollow‧tructured Silicon Suboxideâ€Based Anodes toward Highâ€Performance Lithiumâ€lon Batteries. Advanced Functional Materials, 2021, 31, 2101796.	7.8	127
165	A universal strategy towards high–energy aqueous multivalent–ion batteries. Nature Communications, 2021, 12, 2857.	5.8	126
166	Three-dimensional pie-like current collectors for dendrite-free lithium metal anodes. Energy Storage Materials, 2018, 11, 127-133.	9.5	124
167	3D Oxygenâ€Defective Potassium Vanadate/Carbon Nanoribbon Networks as Highâ€Performance Cathodes for Aqueous Zincâ€Ion Batteries. Small Methods, 2020, 4, 1900670.	4.6	124
168	CuO single crystal with exposed {001} facets - A highly efficient material for gas sensing and Li-ion battery applications. Scientific Reports, 2014, 4, 5753.	1.6	123
169	Two Birds with One Stone: FeS ₂ @C Yolk–Shell Composite for High-Performance Sodium-Ion Energy Storage and Electromagnetic Wave Absorption. Nano Letters, 2020, 20, 3769-3777.	4.5	123
170	Electrochemical Performance of Co[sub 3]O[sub 4]–C Composite Anode Materials. Electrochemical and Solid-State Letters, 2006, 9, A315.	2.2	122
171	A Microwave Synthesis of Mesoporous NiCo ₂ O ₄ Nanosheets as Electrode Materials for Lithiumâ€lon Batteries and Supercapacitors. ChemPhysChem, 2015, 16, 169-175.	1.0	122
172	Innovative nanosize lithium storage alloys with silica as active centre. Journal of Power Sources, 2000, 88, 278-281.	4.0	120
173	Synthesis of Fe2O3–CNT–graphene hybrid materials with an open three-dimensional nanostructure for high capacity lithium storage. Nano Energy, 2013, 2, 425-434.	8.2	120
174	Advances in graphene-based semiconductor photocatalysts for solar energy conversion: fundamentals and materials engineering. Nanoscale, 2015, 7, 13278-13292.	2.8	120
175	Synthesis and high gas sensitivity of tin oxide nanotubes. Sensors and Actuators B: Chemical, 2008, 131, 313-317.	4.0	119
176	MXene encapsulated titanium oxide nanospheres for ultra-stable and fast sodium storage. Energy Storage Materials, 2018, 14, 306-313.	9.5	119
177	Photocatalytic Advanced Oxidation Processes for Water Treatment: Recent Advances and Perspective. Chemistry - an Asian Journal, 2020, 15, 3239-3253.	1.7	118
178	Bimetallic metal-organic frameworks derived Ni-Co-Se@C hierarchical bundle-like nanostructures with high-rate pseudocapacitive lithium ion storage. Energy Storage Materials, 2019, 17, 374-384.	9.5	117
179	2D Superlattices for Efficient Energy Storage and Conversion. Advanced Materials, 2020, 32, e1902654.	11.1	117
180	First-principles study on the enhancement of lithium storage capacity in boron doped graphene. Applied Physics Letters, 2009, 95, .	1.5	116

#	Article	IF	CITATIONS
181	Room-temperature solution synthesis of Bi ₂ O ₃ nanowires for gas sensing application. Nanotechnology, 2009, 20, 495501.	1.3	116
182	Multi-shelled hollow carbon nanospheres for lithium–sulfur batteries with superior performances. Journal of Materials Chemistry A, 2014, 2, 16199-16207.	5.2	116
183	Characterization of Nanocrystalline Si-MCMB Composite Anode Materials. Electrochemical and Solid-State Letters, 2004, 7, A250.	2.2	115
184	Octahedral tin dioxide nanocrystals as high capacity anode materials for Na-ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 12543.	1.3	115
185	Towards High-Energy and Anti-Self-Discharge Zn-Ion Hybrid Supercapacitors with New Understanding of the Electrochemistry. Nano-Micro Letters, 2021, 13, 95.	14.4	115
186	Electrochemical performance of LiFePO4 cathode material coated with ZrO2 nanolayer. Electrochemistry Communications, 2008, 10, 165-169.	2.3	114
187	Co–B Nanoflakes as Multifunctional Bridges in ZnCo ₂ O ₄ Microâ€/Nanospheres for Superior Lithium Storage with Boosted Kinetics and Stability. Advanced Energy Materials, 2019, 9, 1803612.	10.2	114
188	Remarkable cycling durability of lithium-sulfur batteries with interconnected mesoporous hollow carbon nanospheres as high sulfur content host. Chemical Engineering Journal, 2020, 401, 126141.	6.6	114
189	Recent progress of emerging cathode materials for sodium ion batteries. Materials Chemistry Frontiers, 2021, 5, 3735-3764.	3.2	114
190	Advanced Lithiumâ€lon Batteries for Practical Applications: Technology, Development, and Future Perspectives. Advanced Materials Technologies, 2018, 3, 1700376.	3.0	112
191	In-situ exfoliation of porous carbon nitride nanosheets for enhanced hydrogen evolution. Nano Energy, 2019, 59, 598-609.	8.2	112
192	Two-Dimensional Unilamellar Cation-Deficient Metal Oxide Nanosheet Superlattices for High-Rate Sodium Ion Energy Storage. ACS Nano, 2018, 12, 12337-12346.	7.3	111
193	Rational Design of Hierarchically Core–Shell Structured Ni ₃ S ₂ @NiMoO ₄ Nanowires for Electrochemical Energy Storage. Small, 2018, 14, e1800791.	5.2	111
194	Fabrication of Metal Molybdate Micro/Nanomaterials for Electrochemical Energy Storage. Small, 2017, 13, 1700917.	5.2	110
195	Synergistic coupling of NiS1.03 nanoparticle with S-doped reduced graphene oxide for enhanced lithium and sodium storage. Chemical Engineering Journal, 2021, 407, 127199.	6.6	110
196	Fe ₃ C@nitrogen doped CNT arrays aligned on nitrogen functionalized carbon nanofibers as highly efficient catalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 19672-19679.	5.2	109
197	Bandgap engineering of ultrathin graphene-like carbon nitride nanosheets with controllable oxygenous functionalization. Carbon, 2017, 113, 63-75.	5.4	109
198	Soft-template synthesis of 3D porous graphene foams with tunable architectures for lithium–O ₂ batteries and oil adsorption applications. Journal of Materials Chemistry A, 2014, 2, 7973-7979.	5.2	108

#	Article	IF	CITATIONS
199	High-Power and Ultralong-Life Aqueous Zinc-Ion Hybrid Capacitors Based on Pseudocapacitive Charge Storage. Nano-Micro Letters, 2019, 11, 94.	14.4	108
200	Toward High Performance Lithium–Sulfur Batteries Based on Li ₂ S Cathodes and Beyond: Status, Challenges, and Perspectives. Advanced Functional Materials, 2018, 28, 1800154.	7.8	107
201	Facile self-templating synthesis of layered carbon with N, S dual doping for highly efficient sodium storage. Carbon, 2021, 173, 31-40.	5.4	107
202	Localized Waterâ€Inâ€Salt Electrolyte for Aqueous Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 19965-19973.	7.2	107
203	Physical and electrochemical properties of doped lithium iron phosphate electrodes. Electrochimica Acta, 2004, 50, 443-447.	2.6	106
204	Electrochemical properties of carbon coated LiFePO4 cathode materials. Journal of Power Sources, 2005, 146, 521-524.	4.0	106
205	Chemical-free synthesis of graphene–carbon nanotube hybrid materials for reversible lithium storage in lithium-ion batteries. Carbon, 2012, 50, 4557-4565.	5.4	106
206	Self-standing sulfur cathodes enabled by 3D hierarchically porous titanium monoxide-graphene composite film for high-performance lithium-sulfur batteries. Nano Energy, 2018, 47, 331-339.	8.2	106
207	Characterization of LiM[sub x]Fe[sub 1â^'x]PO[sub 4] (M=Mg,â€,Zr,â€,Ti) Cathode Materials Prepared by the Sol-Gel Method. Electrochemical and Solid-State Letters, 2004, 7, A503.	2.2	105
208	Highly disordered cobalt oxide nanostructure induced by sulfur incorporation for efficient overall water splitting. Nano Energy, 2020, 71, 104652.	8.2	105
209	A Stable Conversion and Alloying Anode for Potassiumâ€lon Batteries: A Combined Strategy of Encapsulation and Confinement. Advanced Functional Materials, 2020, 30, 2001588.	7.8	104
210	Self-Healing Janus Interfaces for High-Performance LAGP-Based Lithium Metal Batteries. ACS Energy Letters, 2020, 5, 1456-1464.	8.8	104
211	Synthesis and characterization of nanosize cobalt sulfide for rechargeable lithium batteries. Journal of Power Sources, 2006, 159, 287-290.	4.0	103
212	Mesoporous graphene paper immobilised sulfur as a flexible electrode for lithium–sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 13484.	5.2	103
213	Heterostructure ZnSe-CoSe2 embedded with yolk-shell conductive dodecahedral as Two-in-one hosts for cathode and anode protection of Lithium–Sulfur full batteries. Energy Storage Materials, 2022, 47, 223-234.	9.5	103
214	Tungsten Disulfide Nanotubes for Lithium Storage. Electrochemical and Solid-State Letters, 2004, 7, A321.	2.2	102
215	Enabling immobilization and conversion of polysulfides through a nitrogen-doped carbon nanotubes/ultrathin MoS ₂ nanosheet core–shell architecture for lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 13103-13112.	5.2	102
216	Polyolefinâ€Based Janus Separator for Rechargeable Sodium Batteries. Angewandte Chemie - International Edition, 2020, 59, 16725-16734.	7.2	102

#	Article	IF	CITATIONS
217	Nanocrystalline NiSi alloy as an anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2000, 306, 249-252.	2.8	101
218	Electrochemical properties of Si thin film prepared by pulsed laser deposition for lithium ion micro-batteries. Electrochimica Acta, 2006, 51, 5246-5249.	2.6	101
219	Synthesis and Characterization of LiFePO[sub 4] and LiTi[sub 0.01]Fe[sub 0.99]PO[sub 4] Cathode Materials. Journal of the Electrochemical Society, 2006, 153, A25.	1.3	99
220	Hierarchical NiCo2O4 nanorods as an efficient cathode catalyst for rechargeable non-aqueous Li–O2 batteries. Electrochemistry Communications, 2013, 31, 88-91.	2.3	99
221	MoS ₂ Nanosheets Supported on 3D Graphene Aerogel as a Highly Efficient Catalyst for Hydrogen Evolution. Chemistry - A European Journal, 2015, 21, 15908-15913.	1.7	99
222	Iron-Doped NiCoP Porous Nanosheet Arrays as a Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 571-579.	2.5	99
223	High-performance lithium–organic batteries by achieving 16 lithium storage in poly(imine-anthraquinone). Journal of Materials Chemistry A, 2019, 7, 2368-2375.	5.2	96
224	Phosphorus and Oxygen Dualâ€Doped Porous Carbon Spheres with Enhanced Reaction Kinetics as Anode Materials for Highâ€Performance Potassiumâ€ion Hybrid Capacitors. Advanced Functional Materials, 2021, 31, 2102060.	7.8	96
225	Ni@Pt core–shell nanoparticles with enhanced catalytic activity for oxygen reduction reaction. Journal of Alloys and Compounds, 2010, 503, L1-L4.	2.8	94
226	3D mesoporous hybrid NiCo ₂ O ₄ @graphene nanoarchitectures as electrode materials for supercapacitors with enhanced performances. Journal of Materials Chemistry A, 2014, 2, 8103-8109.	5.2	94
227	Interface Engineering of MXene Composite Separator for Highâ€Performance Li–Se and Na–Se Batteries. Advanced Energy Materials, 2020, 10, 2000446.	10.2	94
228	Synthesis of α–SiO ₂ nanowires using Au nanoparticle catalysts on a silicon substrate. Journal of Materials Research, 2001, 16, 683-686.	1.2	93
229	Hydrogen storage in porous graphene with Al decoration. International Journal of Hydrogen Energy, 2014, 39, 16244-16251.	3.8	93
230	Micelle-Template Synthesis of Nitrogen-Doped Mesoporous Graphene as an Efficient Metal-Free Electrocatalyst for Hydrogen Production. Scientific Reports, 2014, 4, 7557.	1.6	93
231	Twoâ€Dimensional Arrays of Transition Metal Nitride Nanocrystals. Advanced Materials, 2019, 31, e1902393.	11.1	93
232	Sensitive detection of glyphosate based on a Cu-BTC MOF/g-C3N4 nanosheet photoelectrochemical sensor. Electrochimica Acta, 2019, 317, 341-347.	2.6	93
233	Microwave hydrothermal synthesis of high performance tin–graphene nanocomposites for lithium ion batteries. Journal of Power Sources, 2012, 216, 22-27.	4.0	92
234	Facile synthesis of graphitic carbon nitride/nanostructured α-Fe2O3 composites and their excellent electrochemical performance for supercapacitor and enzyme-free glucose detection applications. Applied Surface Science, 2016, 390, 303-310.	3.1	92

#	Article	IF	CITATIONS
235	Graphite–Tin composites as anode materials for lithium-ion batteries. Journal of Power Sources, 2001, 97-98, 211-215.	4.0	91
236	The Rise of Prussian Blue Analogs: Challenges and Opportunities for Highâ€Performance Cathode Materials in Potassiumâ€Ion Batteries. Small Structures, 2021, 2, 2000054.	6.9	91
237	2D Materialâ€Based Heterostructures for Rechargeable Batteries. Advanced Energy Materials, 2022, 12, 2100864.	10.2	91
238	Constructing Atomic Heterometallic Sites in Ultrathin Nickel-Incorporated Cobalt Phosphide Nanosheets via a Boron-Assisted Strategy for Highly Efficient Water Splitting. Nano Letters, 2021, 21, 823-832.	4.5	91
239	Nanosize cobalt oxides as anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2002, 340, L5-L10.	2.8	90
240	Nanocomposites of CoO and a mesoporous carbon (CMK-3) as a high performance cathode catalyst for lithium-oxygen batteries. Nano Research, 2012, 5, 460-469.	5.8	90
241	Modified Tetrathiafulvalene as an Organic Conductor for Improving Performances of Liâ~'O ₂ Batteries. Angewandte Chemie - International Edition, 2017, 56, 8505-8509.	7.2	90
242	Hierarchical sodium-rich Prussian blue hollow nanospheres as high-performance cathode for sodium-ion batteries. Nano Research, 2018, 11, 3979-3990.	5.8	90
243	A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries. Nature Communications, 2021, 12, 5746.	5.8	89
244	3D hybrid–porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors. Journal of Power Sources, 2016, 325, 286-291.	4.0	88
245	SnS ₂ /Sb ₂ S ₃ Heterostructures Anchored on Reduced Graphene Oxide Nanosheets with Superior Rate Capability for Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2018, 24, 3873-3881.	1.7	88
246	Electrospun cobalt embedded porous nitrogen doped carbon nanofibers as an efficient catalyst for water splitting. Journal of Materials Chemistry A, 2016, 4, 12818-12824.	5.2	87
247	Hierarchical ZnO nanorod arrays grown on copper foam as an advanced three-dimensional skeleton for dendrite-free sodium metal anodes. Nano Energy, 2021, 80, 105563.	8.2	87
248	Paper-like free-standing polypyrrole and polypyrrole–LiFePO4 composite films for flexible and bendable rechargeable battery. Electrochemistry Communications, 2008, 10, 1781-1784.	2.3	86
249	Nano-structured SnO2-carbon composites obtained by in situ spray pyrolysis method as anodes in lithium batteries. Journal of Power Sources, 2005, 146, 180-184.	4.0	85
250	Cobalt-embedded hierarchically-porous hollow carbon microspheres as multifunctional confined reactors for high-loading Li-S batteries. Nano Energy, 2021, 85, 105981.	8.2	85
251	Mesoporous hexagonal Co3O4 for high performance lithium ion batteries. Scientific Reports, 2014, 4, 6519.	1.6	84
252	Yolk–shell N-doped carbon coated FeS ₂ nanocages as a high-performance anode for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 14051-14059.	5.2	84

#	Article	IF	CITATIONS
253	Nanostructured nickel sulfide synthesized via a polyol route as a cathode material for the rechargeable lithium battery. Electrochemistry Communications, 2007, 9, 1877-1880.	2.3	83
254	Construction of Hierarchical K _{1.39} Mn ₃ O ₆ Spheres via AlF ₃ Coating for Highâ€Performance Potassiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1803757.	10.2	83
255	Atomically dispersed Ni in cadmium-zinc sulfide quantum dots for high-performance visible-light photocatalytic hydrogen production. Science Advances, 2020, 6, eaaz8447.	4.7	83
256	Differential voltage analysis based state of charge estimation methods for lithium-ion batteries using extended Kalman filter and particle filter. Energy, 2018, 158, 1028-1037.	4.5	83
257	Improvement of electrochemical properties of the spinel LiMn2O4 using a Cr dopant effect. Solid State Ionics, 1999, 120, 95-101.	1.3	82
258	Electrochemical studies of graphitized mesocarbon microbeads as an anode in lithium-ion cells. Journal of Power Sources, 2003, 114, 292-297.	4.0	82
259	LiTi2(PO4)3 with NASICON-type structure as lithium-storage materials. Journal of Power Sources, 2003, 124, 231-236.	4.0	82
260	Hierarchical macroporous/mesoporous NiCo ₂ O ₄ nanosheets as cathode catalysts for rechargeable Li–O ₂ batteries. Journal of Materials Chemistry A, 2014, 2, 12053.	5.2	82
261	Tunable porous carbon spheres for high-performance rechargeable batteries. Journal of Materials Chemistry A, 2018, 6, 12816-12841.	5.2	82
262	Synthesis and electrochemical performance of doped LiCoO2 materials. Journal of Power Sources, 2007, 174, 828-831.	4.0	81
263	Hydrothermal synthesis of carbon nanotube/cobalt oxide core-shell one-dimensional nanocomposite and application as an anode material for lithium-ion batteries. Electrochemistry Communications, 2009, 11, 546-549.	2.3	81
264	Hierarchical Porous Carbon Spheres for Highâ€Performance Na–O ₂ Batteries. Advanced Materials, 2017, 29, 1606816.	11.1	81
265	Al-based anode materials for Li-ion batteries. Journal of Power Sources, 2003, 119-121, 84-87.	4.0	80
266	Ionic conductivity and electrochemical stability of poly(methylmethacrylate)–poly(ethylene oxide) blend-ceramic fillers composites. Journal of Physics and Chemistry of Solids, 2008, 69, 243-248.	1.9	79
267	Porous graphene wrapped CoO nanoparticles for highly efficient oxygen evolution. Journal of Materials Chemistry A, 2015, 3, 5402-5408.	5.2	79
268	Enhanced Hydrogenation Performance over Hollow Structured Co oO <i>x</i> @N Capsules. Advanced Science, 2019, 6, 1900807.	5.6	79
269	One-pot facile synthesis of iron oxide nanowires as high capacity anode materials for lithium ion batteries. Journal of Alloys and Compounds, 2009, 487, L24-L27.	2.8	78
270	Two-dimensional layered compound based anode materials for lithium-ion batteries and sodium-ion batteries. Journal of Colloid and Interface Science, 2017, 499, 17-32.	5.0	78

#	Article	IF	CITATIONS
271	High-Performance Quasi-Solid-State MXene-Based Li–I Batteries. ACS Central Science, 2019, 5, 365-373.	5.3	78
272	Catalytic Mechanism of Oxygen Vacancies in Perovskite Oxides for Lithium–Sulfur Batteries. Advanced Materials, 2022, 34, e2202222.	11.1	78
273	A study on LiFePO4 and its doped derivatives as cathode materials for lithium-ion batteries. Journal of Power Sources, 2006, 159, 282-286.	4.0	77
274	High capacity cathode materials for Li–S batteries. Journal of Materials Chemistry A, 2013, 1, 1573-1578.	5.2	76
275	Entrapping polysulfides by using ultrathin hollow carbon sphere-functionalized separators in high-rate lithium-sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 16610-16616.	5.2	76
276	Boosting the Reversibility of Sodium Metal Anode via Heteroatomâ€Đoped Hollow Carbon Fibers. Small, 2019, 15, e1902688.	5.2	76
277	Nanocomposites of hematite (α-Fe2O3) nanospindles with crumpled reduced graphene oxide nanosheets as high-performance anode material for lithium-ion batteries. RSC Advances, 2012, 2, 10977.	1.7	75
278	Porous poly(vinylidene fluoride-co-hexafluoropropylene) polymer membrane with sandwich-like architecture for highly safe lithium ion batteries. Journal of Membrane Science, 2014, 472, 133-140.	4.1	75
279	Enhancement of the Rate Capability of LiFePO ₄ by a New Highly Graphitic Carbon-Coating Method. ACS Applied Materials & Interfaces, 2016, 8, 15225-15231.	4.0	74
280	Aegis of Lithium-Rich Cathode Materials via Heterostructured LiAlF ₄ Coating for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 33260-33268.	4.0	74
281	Metal-organic-framework-derived formation of Co–N-doped carbon materials for efficient oxygen reduction reaction. Journal of Energy Chemistry, 2020, 40, 137-143.	7.1	74
282	Boosting the electrochemical performance of 3D composite lithium metal anodes through synergistic structure and interface engineering. Energy Storage Materials, 2020, 26, 56-64.	9.5	73
283	3D Interconnected Carbon Fiber Networkâ€Enabled Ultralong Life Na ₃ V ₂ (PO ₄) ₃ @Carbon Paper Cathode for Sodiumâ€lon Batteries. Small, 2017, 13, 1603318.	5.2	72
284	Temperatureâ€Dependent Nucleation and Growth of Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie, 2019, 131, 11486-11490.	1.6	72
285	Ultra-stable sodium metal-iodine batteries enabled by an in-situ solid electrolyte interphase. Nano Energy, 2019, 57, 692-702.	8.2	72
286	Nanoengineering of Advanced Carbon Materials for Sodiumâ€ion Batteries. Small, 2021, 17, e2007431.	5.2	72
287	Preparation and characterization of carbon nanotubes for energy storage. Journal of Power Sources, 2003, 119-121, 16-23.	4.0	71
288	A Fe3N/carbon composite electrocatalyst for effective polysulfides regulation in room-temperature Na-S batteries. Nature Communications, 2021, 12, 6347.	5.8	71

#	Article	IF	CITATIONS
289	Synthesis and characterization of LiCoxMnyNi1â^xâ^'yO2 as a cathode material for secondary lithium batteries. Journal of Power Sources, 2003, 119-121, 184-188.	4.0	70
290	3D Networked Tin Oxide/Graphene Aerogel with a Hierarchically Porous Architecture for Highâ€Rate Performance Sodiumâ€Ion Batteries. ChemSusChem, 2015, 8, 2948-2955.	3.6	70
291	Bimetal-Organic-Framework Derivation of Ball-Cactus-Like Ni-Sn-P@C-CNT as Long-Cycle Anode for Lithium Ion Battery. Small, 2017, 13, 1700521.	5.2	70
292	Rechargeable anion-shuttle batteries for low-cost energy storage. CheM, 2021, 7, 1993-2021.	5.8	70
293	Serosa-Mimetic Nanoarchitecture Membranes for Highly Efficient Osmotic Energy Generation. Journal of the American Chemical Society, 2021, 143, 16206-16216.	6.6	70
294	Fabrication Methods of Porous Carbon Materials and Separator Membranes for Lithium–Sulfur Batteries: Development and Future Perspectives. Small Methods, 2017, 1, 1700089.	4.6	69
295	β-MnO2 nanorods with exposed tunnel structures as high-performance cathode materials for sodium-ion batteries. NPG Asia Materials, 2013, 5, e70-e70.	3.8	68
296	Polypyrrole hollow nanospheres: stable cathode materials for sodium-ion batteries. Chemical Communications, 2015, 51, 16092-16095.	2.2	68
297	Molecularly Thin Nitride Sheets Stabilized by Titanium Carbide as Efficient Bifunctional Electrocatalysts for Fiber-Shaped Rechargeable Zinc-Air Batteries. Nano Letters, 2020, 20, 2892-2898.	4.5	68
298	Secondary aqueous lithium-ion batteries with spinel anodes and cathodes. Journal of Power Sources, 1998, 74, 198-201.	4.0	67
299	Facile chemical synthesis of nitrogen-doped graphene sheets and their electrochemical capacitance. Journal of Power Sources, 2013, 241, 460-466.	4.0	67
300	Mesocrystal Co3O4 nanoplatelets as high capacity anode materials for Li-ion batteries. Nano Research, 2014, 7, 794-803.	5.8	67
301	Evolution of nanoscale morphology on fracture surface of brittle metallic glass. Applied Physics Letters, 2006, 89, 121909.	1.5	66
302	Ordered Mesoporous Core/Shell SnO ₂ /C Nanocomposite as Highâ€Capacity Anode Material for Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2013, 19, 16897-16901.	1.7	66
303	Gold nanocrystals with variable index facets as highly effective cathode catalysts for lithium–oxygen batteries. NPG Asia Materials, 2015, 7, e155-e155.	3.8	66
304	Hierarchical porous carbon derived from soybean hulls as a cathode matrix for lithium-sulfur batteries. Journal of Alloys and Compounds, 2017, 695, 2246-2252.	2.8	66
305	Mesoporous Germanium Anode Materials for Lithiumâ€lon Battery with Exceptional Cycling Stability in Wide Temperature Range. Small, 2017, 13, 1603045.	5.2	65
306	A novel lithium-ion hybrid capacitor based on an aerogel-like MXene wrapped Fe ₂ O ₃ nanosphere anode and a 3D nitrogen sulphur dual-doped porous carbon cathode. Materials Chemistry Frontiers, 2018, 2, 1811-1821.	3.2	65

#	Article	IF	CITATIONS
307	High-performance zinc-ion batteries enabled by electrochemically induced transformation of vanadium oxide cathodes. Journal of Energy Chemistry, 2021, 60, 233-240.	7.1	65
308	MXene-Based Aerogel Anchored with Antimony Single Atoms and Quantum Dots for High-Performance Potassium-Ion Batteries. Nano Letters, 2022, 22, 1225-1232.	4.5	64
309	Synthesis and characterization of LiNiO2 compounds as cathodes for rechargeable lithium batteries. Journal of Power Sources, 1998, 76, 141-146.	4.0	63
310	Fabrication of the protonated graphitic carbon nitride nanosheets as enhanced electrochemical sensing platforms for hydrogen peroxide and paracetamol detection. Electrochimica Acta, 2016, 206, 259-269.	2.6	63
311	Novel methods for estimating lithium-ion battery state of energy and maximum available energy. Applied Energy, 2016, 178, 1-8.	5.1	63
312	The latest advances in the critical factors (positive electrode, electrolytes, separators) for sodium-sulfur battery. Journal of Alloys and Compounds, 2019, 792, 797-817.	2.8	63
313	Hollow CeO2 spheres conformally coated with graphitic carbon for high-performance supercapacitor electrodes. Applied Surface Science, 2019, 463, 244-252.	3.1	63
314	Recent progress on flexible lithium metal batteries: Composite lithium metal anodes and solid-state electrolytes. Energy Storage Materials, 2020, 29, 310-331.	9.5	63
315	Selfâ€Assembling Synthesis of Freeâ€standing Nanoporous Graphene–Transitionâ€Metal Oxide Flexible Electrodes for Highâ€Performance Lithiumâ€Ion Batteries and Supercapacitors. Chemistry - an Asian Journal, 2014, 9, 206-211.	1.7	62
316	Defect as the essential factor in engineering carbon-nitride-based visible-light-driven Z-scheme photocatalyst. Applied Catalysis B: Environmental, 2020, 260, 118145.	10.8	62
317	Large-scale synthesis and gas sensing application of vertically aligned and double-sided tungsten oxide nanorod arrays. Sensors and Actuators B: Chemical, 2009, 143, 325-332.	4.0	61
318	Porous carbon nanocages encapsulated with tin nanoparticles for high performance sodium-ion batteries. Energy Storage Materials, 2016, 5, 180-190.	9.5	61
319	Bi ₂ Se ₃ @C Rod-like Architecture with Outstanding Electrochemical Properties in Lithium/Potassium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 11073-11081.	2.5	61
320	Progress and prospects of two-dimensional materials for membrane-based osmotic power generation. , 2022, 1, e9120008.		61
321	Lithium storage properties of nanocrystalline eta-Cu6Sn5 alloys prepared by ball-milling. Journal of Alloys and Compounds, 2000, 299, L12-L15.	2.8	60
322	An optimized LiNO3/DMSO electrolyte for high-performance rechargeable Li–O2 batteries. RSC Advances, 2014, 4, 11115.	1.7	60
323	Single-walled carbon nanotube-based polymer monoliths for the enantioselective nano-liquid chromatographic separation of racemic pharmaceuticals. Journal of Chromatography A, 2014, 1360, 100-109.	1.8	60
324	A nitrogen, sulphur dual-doped hierarchical porous carbon with interconnected conductive polyaniline coating for high-performance sodium-selenium batteries. Energy Storage Materials, 2019, 19, 251-260.	9.5	60

#	Article	IF	CITATIONS
325	LiAlÎ Ni1â~Î O2 solid solutions as cathodic materials for rechargeable lithium batteries. Solid State Ionics, 1999, 116, 271-277.	1.3	59
326	Electrochemical Properties and Discharge Mechanism of Na/TiS ₂ Cells with Liquid Electrolyte at Room Temperature. Journal of the Electrochemical Society, 2013, 160, A338-A343.	1.3	59
327	Hierarchical Mesoporous SnO Microspheres as High Capacity Anode Materials for Sodiumâ€lon Batteries. Chemistry - A European Journal, 2014, 20, 3192-3197.	1.7	59
328	Recent Progress in Twoâ€Ðimensional Antimicrobial Nanomaterials. Chemistry - A European Journal, 2019, 25, 929-944.	1.7	59
329	Flexible Conductive Anodes Based on 3D Hierarchical Sn/NS-CNFs@rGO Network for Sodium-Ion Batteries. Nano-Micro Letters, 2019, 11, 63.	14.4	59
330	New approach for synthesis of carbon-mixed LiFePO4 cathode materials. Electrochimica Acta, 2004, 50, 421-426.	2.6	58
331	Superior Electrochemical Performance of Sulfur/Graphene Nanocomposite Material for High apacity Lithium–Sulfur Batteries. Chemistry - an Asian Journal, 2012, 7, 1637-1643.	1.7	58
332	Enhancement of stability for lithium oxygen batteries by employing electrolytes gelled by poly(vinylidene fluoride-co-hexafluoropropylene) and tetraethylene glycol dimethyl ether. Electrochimica Acta, 2015, 183, 56-62.	2.6	58
333	Fabrication of core–shell, yolk–shell and hollow Fe ₃ O ₄ @carbon microboxes for high-performance lithium-ion batteries. Materials Chemistry Frontiers, 2017, 1, 823-830.	3.2	58
334	Enhance electrochemical performance of lithium sulfur battery through a solution-based processing technique. Journal of Power Sources, 2012, 202, 389-393.	4.0	57
335	High Crystalline Prussian White Nanocubes as a Promising Cathode for Sodiumâ€ion Batteries. Chemistry - an Asian Journal, 2018, 13, 342-349.	1.7	57
336	Boost Anion Storage Capacity Using Conductive Polymer as a Pseudocapacitive Cathode for High-Energy and Flexible Lithium Ion Capacitors. ACS Applied Materials & Interfaces, 2020, 12, 10479-10489.	4.0	57
337	Atomic-scale regulation of anionic and cationic migration in alkali metal batteries. Nature Communications, 2021, 12, 4184.	5.8	57
338	Effects of low-temperature carbon encapsulation on the electrochemical performance of SnO2 nanopowders. Carbon, 2008, 46, 35-40.	5.4	56
339	Unraveling the catalytic activities of ruthenium nanocrystals in high performance aprotic Li–O2 batteries. Nano Energy, 2016, 28, 486-494.	8.2	56
340	Investigation of Fe valence in LiFePO4 by Mössbauer and XANES spectroscopic techniques. Solid State Communications, 2004, 132, 455-458.	0.9	55
341	Strain Controlled Ferromagnetic-Antiferromagnetic Transformation in Mn-Doped Silicene for Information Transformation Devices. Journal of Physical Chemistry Letters, 2017, 8, 1484-1488.	2.1	55
342	Highly Efficient, Cost Effective, and Safe Sodiation Agent for Highâ€Performance Sodiumâ€lon Batteries. ChemSusChem, 2018, 11, 3286-3291.	3.6	55

#	Article	IF	CITATIONS
343	Porous Na3V2(PO4)3/C nanoplates for high-performance sodium storage. Journal of Colloid and Interface Science, 2019, 539, 168-174.	5.0	55
344	Growth of straight nanotubes with a cobalt–nickel catalyst by chemical vapor deposition. Applied Physics Letters, 1999, 74, 644-646.	1.5	54
345	175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal. Applied Physics B: Lasers and Optics, 2008, 93, 323-326.	1.1	54
346	One-dimensional nanostructures as electrode materials for lithium-ion batteries with improved electrochemical performance. Journal of Power Sources, 2009, 189, 543-546.	4.0	54
347	Recent developments of aprotic lithium-oxygen batteries: functional materials determine the electrochemical performance. Science Bulletin, 2017, 62, 442-452.	4.3	54
348	Gate control of the electron spin-diffusion length in semiconductor quantum wells. Nature Communications, 2013, 4, 2372.	5.8	53
349	A free-standing LiFePO ₄ –carbon paper hybrid cathode for flexible lithium-ion batteries. Green Chemistry, 2016, 18, 2691-2698.	4.6	53
350	Unlocking Few‣ayered Ternary Chalcogenides for Highâ€Performance Potassiumâ€ŀon Storage. Advanced Energy Materials, 2019, 9, 1901560.	10.2	53
351	Ruthenium nanocrystal decorated vertical graphene nanosheets@Ni foam as highly efficient cathode catalysts for lithium-oxygen batteries. NPG Asia Materials, 2016, 8, e286-e286.	3.8	52
352	A rational synthesis of single-atom iron–nitrogen electrocatalysts for highly efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 16271-16282.	5.2	52
353	Construction of hollow mesoporous silica nanoreactors for enhanced photo-oxidations over Au-Pt catalysts. National Science Review, 2020, 7, 1647-1655.	4.6	52
354	PtxNi alloy nanoparticles as cathode catalyst for PEM fuel cells with enhanced catalytic activity. Journal of Alloys and Compounds, 2009, 488, 195-198.	2.8	51
355	A Hollowâ€Shell Structured V ₂ O ₅ Electrodeâ€Based Symmetric Full Liâ€Ion Battery with Highest Capacity. Advanced Energy Materials, 2019, 9, 1900909.	10.2	51
356	Biomimetic 3D Fe/CeO2 decorated N-doped carbon nanotubes architectures for high-performance lithium-sulfur batteries. Chemical Engineering Journal, 2020, 401, 126079.	6.6	51
357	Desulfurization through Photocatalytic Oxidation: A Critical Review. ChemSusChem, 2021, 14, 492-511.	3.6	51
358	Synthesis, Characterization, and Optical Properties of In2O3Semiconductor Nanowires. Inorganic Chemistry, 2007, 46, 4778-4780.	1.9	50
359	Wintersweetâ€Flowerâ€Like CoFe ₂ O ₄ /MWCNTs Hybrid Material for Highâ€Capacity Reversible Lithium Storage. Chemistry - an Asian Journal, 2012, 7, 1940-1946.	1.7	50
360	Achieving Highâ€Performance 3D K ⁺ â€Preâ€intercalated Ti ₃ C ₂ T _{<i>x</i>} MXene for Potassiumâ€Ion Hybrid Capacitors via Regulating Electrolyte Solvation Structure. Angewandte Chemie - International Edition, 2021, 60, 26246-26253.	7.2	50

#	Article	IF	CITATIONS
361	Electro-Oxidation of Ethanol on Pt-WO[sub 3]â^•C Electrocatalyst. Electrochemical and Solid-State Letters, 2006, 9, A423.	2.2	49
362	Organic sodium terephthalate@graphene hybrid anode materials for sodium-ion batteries. RSC Advances, 2016, 6, 57098-57102.	1.7	49
363	Multiwall carbon nanotube-nickel cobalt oxide hybrid structure as high performance electrodes for supercapacitors and lithium ion batteries. Electrochimica Acta, 2016, 190, 346-353.	2.6	49
364	K ₂ Ti ₂ O ₅ @C Microspheres with Enhanced K ⁺ Intercalation Pseudocapacitance Ensuring Fast Potassium Storage and Longâ€Term Cycling Stability. Small, 2020, 16, e1906131.	5.2	49
365	Continuous Carbon Channels Enable Full Naâ€lon Accessibility for Superior Roomâ€Temperature Na–S Batteries. Advanced Materials, 2022, 34, e2108363.	11.1	49
366	Nanostructured PbO materials obtained in situ by spray solution technique for Li-ion batteries. Journal of Power Sources, 2006, 159, 241-244.	4.0	48
367	Direct electrosynthesis of poly-o-phenylenediamine bulk materials for supercapacitor application. Electrochimica Acta, 2013, 91, 144-151.	2.6	48
368	Microwave hydrothermal synthesis of urchin-like NiO nanospheres as electrode materials for lithium-ion batteries and supercapacitors with enhanced electrochemical performances. Journal of Alloys and Compounds, 2014, 582, 522-527.	2.8	48
369	Hierarchical Interconnected Expanded Graphitic Ribbons Embedded with Amorphous Carbon: An Advanced Carbon Nanostructure for Superior Lithium and Sodium Storage. Small, 2018, 14, e1802221.	5.2	48
370	Novel hybrid of amorphous Sb/N-doped layered carbon for high-performance sodium-ion batteries. Chemical Engineering Journal, 2021, 407, 127169.	6.6	48
371	Nanoconfined SnO2/SnSe2 heterostructures in N-doped carbon nanotubes for high-performance sodium-ion batteries. Chemical Engineering Journal, 2021, 418, 129501.	6.6	48
372	Lithium-ion Battery Instantaneous Available Power Prediction Using Surface Lithium Concentration of Solid Particles in a Simplified Electrochemical Model. IEEE Transactions on Power Electronics, 2018, 33, 9551-9560.	5.4	47
373	WO ₃ nanolayer coated 3D-graphene/sulfur composites for high performance lithium/sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 4596-4603.	5.2	47
374	Single-atom catalysts for high-energy rechargeable batteries. Chemical Science, 2021, 12, 7656-7676.	3.7	47
375	Accelerating Redox Kinetics of Lithium-Sulfur Batteries. Trends in Chemistry, 2020, 2, 1020-1033.	4.4	46
376	Porous Heteroatom-Doped Ti ₃ C ₂ T _{<i>x</i>} MXene Microspheres Enable Strong Adsorption of Sodium Polysulfides for Long-Life Room-Temperature Sodium–Sulfur Batteries. ACS Nano, 2021, 15, 16207-16217.	7.3	46
377	Electrochemical performance of SnSb and Sn/SnSb nanosize powders as anode materials in Li-ion cells. Journal of Alloys and Compounds, 2005, 400, 234-238.	2.8	45
378	Characterisation of olivine-type LiMnxFe1â^'xPO4 cathode materials. Journal of Alloys and Compounds, 2006, 425, 362-366.	2.8	45

#	Article	IF	CITATIONS
379	Rose flower-like NiCo2O4 with hierarchically porous structures for highly reversible lithium storage. Journal of Alloys and Compounds, 2016, 684, 691-698.	2.8	45
380	Novel Synthesis of Red Phosphorus Nanodot/Ti ₃ C ₂ T _{<i>x</i>} MXenes from Low-Cost Ti ₃ SiC ₂ MAX Phases for Superior Lithium- and Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 42086-42093.	4.0	45
381	Metal–organic frameworks as separators and electrolytes for lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 7301-7316.	5.2	45
382	Recent progress in quasi-solid and solid polymer electrolytes for multivalent metal-ion batteries. Journal of Materials Chemistry A, 2021, 9, 24175-24194.	5.2	45
383	Growth of carbon nanotubes on cobalt disilicide precipitates by chemical vapor deposition. Applied Physics Letters, 1998, 72, 3297-3299.	1.5	44
384	Synthesis of tuneable porous hematites (α-Fe2O3) for gas sensing and lithium storage in lithium ion batteries. Microporous and Mesoporous Materials, 2012, 149, 36-45.	2.2	44
385	A study of PtxCoy alloy nanoparticles as cathode catalysts for lithium-air batteries with improved catalytic activity. Journal of Power Sources, 2013, 244, 488-493.	4.0	44
386	Sb2O3 Nanowires as Anode Material for Sodium-Ion Battery. Arabian Journal for Science and Engineering, 2014, 39, 6589-6593.	1.1	44
387	Antimony-Carbon-Graphene Fibrous Composite as Freestanding Anode Materials for Sodium-ion Batteries. Electrochimica Acta, 2015, 177, 304-309.	2.6	44
388	Electrochemical studies on LiFe1â^'xCoxPO4/carbon composite cathode materials synthesized by citrate gel technique for lithium-ion batteries. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 149, 93-98.	1.7	43
389	Facile Synthesis and Characterization of Gallium Oxide (β-Ga ₂ O ₃) 1D Nanostructures: Nanowires, Nanoribbons, and Nanosheets. Crystal Growth and Design, 2008, 8, 1940-1944.	1.4	43
390	One-dimensional magnetite Fe3O4 nanowires as electrode material for Li-ion batteries with improved electrochemical performance. Journal of Power Sources, 2013, 244, 742-746.	4.0	43
391	High-Energy and High-Power Nonaqueous Lithium-Ion Capacitors Based on Polypyrrole/Carbon Nanotube Composites as Pseudocapacitive Cathodes. ACS Applied Materials & Interfaces, 2019, 11, 15646-15655.	4.0	43
392	Enhance plasticity of bulk metallic glasses by geometric confinement. Journal of Materials Research, 2007, 22, 2384-2388.	1.2	42
393	Morphology control and electrochemical properties of nanosize LiFePO4 cathode material synthesized by co-precipitation combined with in situ polymerization. Journal of Alloys and Compounds, 2011, 509, 1040-1044.	2.8	42
394	Degradation mechanism of room temperature Na/Ni3S2 cells using Ni3S2 electrodes prepared by mechanical alloying. Journal of Power Sources, 2013, 244, 764-770.	4.0	42
395	Ruthenium decorated hierarchically ordered macro–mesoporous carbon for lithium oxygen batteries. Journal of Materials Chemistry A, 2016, 4, 9774-9780.	5.2	42
396	Two-dimensional Sb@TiO2â^'x nanoplates as a high-performance anode material for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 2553-2559.	5.2	42

#	Article	IF	CITATIONS
397	Dendrite-Free Sodium Metal Batteries Enabled by the Release of Contact Strain on Flexible and Sodiophilic Matrix. Nano Letters, 2020, 20, 6112-6119.	4.5	42
398	Deepâ€Eutecticâ€Solventâ€Based Selfâ€Healing Polymer Electrolyte for Safe and Longâ€Life Lithiumâ€Metal Batteries. Angewandte Chemie, 2020, 132, 9219-9227.	1.6	42
399	Electrochemical characteristics of tin-coated MCMB graphite as anode in Lithium-ion cells. Electrochimica Acta, 2004, 50, 517-522.	2.6	41
400	Enhancement of Ionic Conductivity of PEO Based Polymer Electrolyte by the Addition of Nanosize Ceramic Powders. Journal of Nanoscience and Nanotechnology, 2005, 5, 1135-1140.	0.9	41
401	Highly flexible and bendable free-standing thin film polymer for battery application. Materials Letters, 2009, 63, 2352-2354.	1.3	40
402	Chemical processing of double-walled carbon nanotubes for enhanced hydrogen storage. International Journal of Hydrogen Energy, 2010, 35, 6345-6349.	3.8	40
403	Electronic structure and thermoelectric properties of Bi2Te3 crystals and graphene-doped Bi2Te3. Thin Solid Films, 2010, 518, e57-e60.	0.8	40
404	Large-scale and low cost synthesis of graphene as high capacity anode materials for lithium-ion batteries. Carbon, 2013, 64, 158-169.	5.4	40
405	Hierarchical Vanadium Pentoxide Spheres as Highâ€Performance Anode Materials for Sodiumâ€ŀon Batteries. ChemSusChem, 2015, 8, 2877-2882.	3.6	40
406	Encapsulating MnSe Nanoparticles Inside 3D Hierarchical Carbon Frameworks with Lithium Storage Boosted by in Situ Electrochemical Phase Transformation. ACS Applied Materials & Interfaces, 2019, 11, 33022-33032.	4.0	40
407	A robust flame retardant fluorinated polyimide nanofiber separator for high-temperature lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 14788-14798.	5.2	40
408	Advances of atomically dispersed catalysts from single-atom to clusters in energy storage and conversion applications. Progress in Materials Science, 2022, 128, 100964.	16.0	40
409	Dual Protection of Sulfur by Carbon Nanospheres and Graphene Sheets for Lithium–Sulfur Batteries. Chemistry - A European Journal, 2014, 20, 5224-5230.	1.7	39
410	Enhancement of the Stability of Fluorine Atoms on Defective Graphene and at Graphene/Fluorographene Interface. ACS Applied Materials & Interfaces, 2015, 7, 19659-19665.	4.0	39
411	Rational Design of a P2-Type Spherical Layered Oxide Cathode for High-Performance Sodium-Ion Batteries. ACS Central Science, 2019, 5, 1937-1945.	5.3	39
412	Synthesis of nanosized vanadium pentoxide/carbon composites by spray pyrolysis for electrochemical capacitor application. Electrochimica Acta, 2009, 54, 1420-1425.	2.6	38
413	Graphene-supported SnO2 nanoparticles prepared by a solvothermal approach for an enhanced electrochemical performance in lithium-ion batteries. Nanoscale Research Letters, 2012, 7, 215.	3.1	38
414	Microwave synthesis of α-Fe2O3 nanoparticles and their lithium storage properties: A comparative study. Journal of Alloys and Compounds, 2015, 648, 732-739.	2.8	38

#	Article	IF	CITATIONS
415	Streamline Sulfur Redox Reactions to Achieve Efficient Roomâ€Temperature Sodium–Sulfur Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	38
416	Synergy of MXene with Se Infiltrated Porous Nâ€Doped Carbon Nanofibers as Janus Electrodes for Highâ€Performance Sodium/Lithium–Selenium Batteries. Advanced Energy Materials, 2022, 12, .	10.2	38
417	A Bifunctional Organic Redox Catalyst for Rechargeable Lithium–Oxygen Batteries with Enhanced Performances. Advanced Science, 2016, 3, 1500285.	5.6	37
418	Identification of Host-Plant Volatiles and Characterization of Two Novel General Odorant-Binding Proteins from the Legume Pod Borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae). PLoS ONE, 2015, 10, e0141208.	1.1	37
419	Recent Advances in Application of Graphitic Carbon Nitrideâ€Based Catalysts for Photocatalytic Nitrogen Fixation. Small, 2022, 18, .	5.2	37
420	Structural, physical and electrochemical characterisation of LiNixCo1â^'xO2 solid solutions. Journal of Power Sources, 2000, 85, 279-283.	4.0	36
421	Tin-based composite materials as anode materials for Li-ion batteries. Journal of Power Sources, 2003, 119-121, 45-49.	4.0	36
422	12.95ÂmW sixth harmonic generation with KBe2BO3F2 crystal. Applied Physics B: Lasers and Optics, 2008, 91, 95-97.	1.1	36
423	Novel highly porous Sn–C composite as high performance anode material for lithium-ion batteries. Electrochimica Acta, 2012, 65, 275-279.	2.6	36
424	Mesoporous carbon with large pores as anode for Na-ion batteries. Science Bulletin, 2014, 59, 2186-2190.	1.7	36
425	Voltammetric Sensor Modified by EDTA-immobilized Graphene-like Carbon Nitride Nanosheets: Preparation, Characterization and Selective Determination of Ultra-Trace Pb (II) in Water Samples. Electrochimica Acta, 2016, 212, 722-733.	2.6	36
426	Rapid fabrication of oxygen defective α-Fe ₂ O ₃ (110) for enhanced photoelectrochemical activities. Dalton Transactions, 2020, 49, 12037-12048.	1.6	36
427	Polyaniline engineering defect-induced nitrogen doped carbon-supported Co3O4 hybrid composite as a high-efficiency electrocatalyst for oxygen evolution reaction. Applied Surface Science, 2020, 526, 146626.	3.1	36
428	Conductivity and Magnetic Susceptibility of Nanotube/Polypyrrole Nanocomposites. Journal of Low Temperature Physics, 2000, 119, 41-48.	0.6	35
429	Synthesis and characterization of one-dimensional CdSe nanostructures. Applied Physics Letters, 2006, 88, 193115.	1.5	35
430	Hydrogenation of silicene with tensile strains. Journal of Materials Chemistry C, 2015, 3, 2593-2602.	2.7	35
431	Multifunctional Freeâ€Standing Gel Polymer Electrolyte with Carbon Nanofiber Interlayers for Highâ€Performance Lithium–Sulfur Batteries. Chemistry - an Asian Journal, 2017, 12, 1470-1474.	1.7	35
432	Mixed Lithium Oxynitride/Oxysulfide as an Interphase Protective Layer To Stabilize Lithium Anodes for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 39695-39704.	4.0	35

#	Article	IF	CITATIONS
433	Antimonyâ€based nanomaterials for highâ€performance potassiumâ€ion batteries. EcoMat, 2020, 2, e12027.	6.8	35
434	A Dualâ€Protective Artificial Interface for Stable Lithium Metal Anodes. Advanced Energy Materials, 2021, 11, 2102242.	10.2	35
435	Preparation of orthorhombic LiMnO2 material via the sol–gel process. Journal of Power Sources, 2003, 119-121, 221-225.	4.0	34
436	An investigation on electrochemical behavior of nanosize zinc sulfide electrode in lithium-ion cells. Journal of Solid State Electrochemistry, 2006, 10, 250-254.	1.2	34
437	Folic acid-functionalized magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell composite particles: Synthesis and application in drug release. Materials Science and Engineering C, 2013, 33, 2879-2884.	3.8	34
438	Graphene/MnO2 hybrid nanosheets as high performance electrode materials for supercapacitors. Materials Chemistry and Physics, 2014, 143, 740-746.	2.0	34
439	Single-Step, Plasma-Enabled Reforming of Natural Precursors into Vertical Graphene Electrodes with High Areal Capacitance. ACS Sustainable Chemistry and Engineering, 2015, 3, 544-551.	3.2	34
440	Construction of an impedimetric immunosensor for label-free detecting carbofuran residual in agricultural and environmental samples. Food Control, 2015, 53, 72-80.	2.8	34
441	A Threeâ€Component Nanocomposite with Synergistic Reactivity for Oxygen Reduction Reaction in Alkaline Solution. Advanced Energy Materials, 2015, 5, 1401186.	10.2	34
442	In situ growth of ZnO nanodots on carbon hierarchical hollow spheres as high-performance electrodes for lithium-ion batteries. Journal of Alloys and Compounds, 2018, 735, 1079-1087.	2.8	34
443	Progress and perspective on two-dimensional unilamellar metal oxide nanosheets and tailored nanostructures from them for electrochemical energy storage. Energy Storage Materials, 2019, 19, 281-298.	9.5	34
444	Synthesis and characterization of a large amount of branched Ni2Si nanowires. Applied Physics A: Materials Science and Processing, 2004, 79, 1853-1856.	1.1	33
445	A new rapid synthesis technique for electrochemically active materials used in energy storage applications. Electrochemistry Communications, 2006, 8, 434-438.	2.3	33
446	Hydrothermal Synthesis of Nickel Oxide Nanosheets for Lithiumâ€lon Batteries and Supercapacitors with Excellent Performance. Chemistry - an Asian Journal, 2013, 8, 2828-2832.	1.7	33
447	P doped MoS2 nanoplates embedded in nitrogen doped carbon nanofibers as an efficient catalyst for hydrogen evolution reaction. Journal of Colloid and Interface Science, 2019, 547, 291-298.	5.0	33
448	Activating Inert Surface Pt Single Atoms via Subsurface Doping for Oxygen Reduction Reaction. Nano Letters, 2021, 21, 7970-7978.	4.5	33
449	Solvothermal synthesis and characterization of ZnSe nanoplates. Journal of Crystal Growth, 2008, 310, 3645-3648.	0.7	32
450	Determination of Glyphosate and Aminomethylphosphonic Acid in Water by LC Using a New Labeling Reagent, 4-Methoxybenzenesulfonyl Fluoride. Chromatographia, 2010, 72, 679-686.	0.7	32

#	Article	IF	CITATIONS
451	Glycothermal synthesis of assembled vanadium oxide nanostructures for gas sensing. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	32
452	Facile Synthesis of Ge@C Core–Shell Nanocomposites for Highâ€Performance Lithium Storage in Lithiumâ€Ion Batteries. Chemistry - an Asian Journal, 2013, 8, 3142-3146.	1.7	32
453	Synthesis of Singleâ€Crystalline Spinel LiMn ₂ O ₄ Nanorods for Lithiumâ€lon Batteries with High Rate Capability and Long Cycle Life. Chemistry - A European Journal, 2014, 20, 17125-17131.	1.7	32
454	Ultra-thin Al2O3 coating on the acid-treated 0.3Li2MnO3â‹0.7LiMn0.60Ni0.25Co0.15O2 electrode for Li-ion batteries. Journal of Alloys and Compounds, 2014, 608, 110-117.	2.8	32
455	Construction of a non-enzymatic sensor based on the poly(o-phenylenediamine)/Ag-NPs composites for detecting glucose in blood. Materials Science and Engineering C, 2017, 71, 844-851.	3.8	32
456	Porous Mo2C nanorods as an efficient catalyst for the hydrogen evolution reaction. Journal of Physics and Chemistry of Solids, 2019, 132, 230-235.	1.9	32
457	Polymeric carbon nitride modified polyacrylonitrile fabrics with efficient self-cleaning and water disinfection under visible light. Chemical Engineering Journal, 2020, 391, 123506.	6.6	32
458	Application of Photocatalytic Materials in Sensors. Advanced Materials Technologies, 2020, 5, 1900993.	3.0	32
459	Manipulating Stable Layered P2â€Type Cathode via a Coâ€Substitution Strategy for High Performance Sodium Ion Batteries. Small Methods, 2022, 6, e2101292.	4.6	32
460	Electrochemical and magnetic characterization of LiFePO4 and Li0.95Mg0.05FePO4 cathode materials. Journal of Solid State Electrochemistry, 2006, 11, 177-185.	1.2	31
461	Electrochemical properties of an as-deposited LiFePO4 thin film electrode prepared by aerosol deposition. Journal of Power Sources, 2013, 244, 646-651.	4.0	31
462	Charge–discharge properties of tin dioxide for sodium-ion battery. Materials Research Bulletin, 2014, 58, 186-189.	2.7	31
463	An investigation of the morphology effect in Fe ₂ O ₃ anodes for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 9955-9959.	5.2	31
464	Facile synthesis of <i>Camellia oleifera</i> shell-derived hard carbon as an anode material for lithium-ion batteries. RSC Advances, 2019, 9, 20424-20431.	1.7	31
465	A functional hyperbranched binder enabling ultra-stable sulfur cathode for high-performance lithium-sulfur battery. Journal of Energy Chemistry, 2020, 50, 63-72.	7.1	31
466	Rational Electrolyte Design toward Cyclability Remedy for Roomâ€Temperature Sodium–Sulfur Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	31
467	Structural evolution in TiCu-based bulk metallic glass with large compressive plasticity. Applied Physics Letters, 2006, 89, 251909.	1.5	30
468	A facile single-source approach to urchin-like NiS nanostructures. Materials Research Bulletin, 2010, 45, 766-771.	2.7	30

#	Article	IF	CITATIONS
469	A multi-functional gel co-polymer bridging liquid electrolyte and solid cathode nanoparticles: An efficient route to Li–O 2 batteries with improved performance. Energy Storage Materials, 2017, 7, 1-7.	9.5	30
470	Stable Conversion Chemistryâ€Based Lithium Metal Batteries Enabled by Hierarchical Multifunctional Polymer Electrolytes with Near‧ingle Ion Conduction. Angewandte Chemie, 2019, 131, 6062-6067.	1.6	30
471	<i>Ab initio</i> calculations on Li-ion migration in Li2FeSiO4 cathode material with a P21 symmetry structure. Applied Physics Letters, 2011, 99, .	1.5	29
472	Two-dimensional magnetic correlations and partial long-range order in geometrically frustrated CaOFeS with triangle lattice of Fe ions. Physical Review B, 2015, 91, .	1.1	29
473	Challenges for Developing Rechargeable Roomâ€Temperature Sodium Oxygen Batteries. Advanced Materials Technologies, 2018, 3, 1800110.	3.0	29
474	Strong charge polarization effect enabled by surface oxidized titanium nitride for lithium-sulfur batteries. Communications Chemistry, 2019, 2, .	2.0	29
475	Ultraefficiently Calming Cytokine Storm Using Ti ₃ C ₂ T <i>_x</i> MXene. Small Methods, 2021, 5, 2001108.	4.6	29
476	Preparation of Mn 3 O 4 nanowires by calcining the precursor powders synthesized in a novel inverse microemulsion. Applied Physics A: Materials Science and Processing, 2003, 76, 1117-1120.	1.1	28
477	Construction of a non-enzymatic glucose sensor based on copolymer P4VP-co-PAN and Fe2O3 nanoparticles. Materials Science and Engineering C, 2014, 35, 420-425.	3.8	28
478	A simple approach to prepare nickel hydroxide nanosheets for enhanced pseudocapacitive performance. RSC Advances, 2014, 4, 19476-19481.	1.7	28
479	Ultra-stable binder-free rechargeable Li/I ₂ batteries enabled by "Betadine―chemical interaction. Chemical Communications, 2018, 54, 12337-12340.	2.2	28
480	Controlled synthesis and characterization of ZnSe nanostructures via a solvothermal approach in a mixed solution. Materials Chemistry and Physics, 2009, 115, 204-208.	2.0	27
481	Molecular dynamic investigation of mechanical properties of armchair and zigzag double-walled carbon nanotubes under various loading conditions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 969-974.	0.9	27
482	The addition of iron to Ni3S2 electrode for sodium secondary battery. Current Applied Physics, 2011, 11, S215-S218.	1.1	27
483	Construction of a non-enzymatic glucose sensor based on copper nanoparticles/poly(o-phenylenediamine) nanocomposites. Journal of Solid State Electrochemistry, 2015, 19, 731-738.	1.2	27
484	Wetting behavior of water on silicon carbide polar surfaces. Physical Chemistry Chemical Physics, 2016, 18, 28033-28039.	1.3	27
485	Antimony/Porous Biomass Carbon Nanocomposites as Highâ€Capacity Anode Materials for Sodium″on Batteries. Chemistry - an Asian Journal, 2017, 12, 116-121.	1.7	27
486	Dependence of the optical conductivity on the uniaxial and biaxial strains in black phosphorene. Physical Review B, 2018, 97, .	1.1	27

#	Article	IF	CITATIONS
487	Progress and prospects of two-dimensional materials for membrane-based water desalination. Materials Today Advances, 2020, 8, 100108.	2.5	27
488	Physical and electrochemical characterization of LiNi0.8Co0.2O2 thin-film electrodes deposited by laser ablation. Journal of Power Sources, 2001, 97-98, 298-302.	4.0	26
489	Synthesis of nanocrystalline transition metal and oxides for lithium storage. Journal of Power Sources, 2005, 146, 487-491.	4.0	26
490	Sustainable process for all-carbon electrodes: Horticultural doping of natural-resource-derived nano-carbons for high-performance supercapacitors. Carbon, 2015, 91, 386-394.	5.4	26
491	Bimetallic Sulfide/Sulfur Doped T3C2Tx MXene Nanocomposites as High-performance Anode Materials for Sodium-ion Batteries. Chemical Research in Chinese Universities, 2020, 36, 431-438.	1.3	26
492	A long-life lithium-oxygen battery via a molecular quenching/mediating mechanism. Science Advances, 2022, 8, eabm1899.	4.7	26
493	Synthesis of Nonstoichiometric Amorphous Mg-Based Alloy Electrodes by Mechanical Milling. Electrochemical and Solid-State Letters, 1999, 3, 121.	2.2	25
494	Conducting polymer-doped polyprrrole as an effective cathode catalyst for Li-O2 batteries. Materials Research Bulletin, 2013, 48, 4979-4983.	2.7	25
495	Microwave-assisted synthesis of spherical β-Ni(OH) 2 superstructures for electrochemical capacitors with excellent cycling stability. Chemical Physics Letters, 2014, 610-611, 115-120.	1.2	25
496	Self-crosslinkable polyaniline with coordinated stabilized CoOOH nanosheets as a high-efficiency electrocatalyst for oxygen evolution reaction. Applied Surface Science, 2020, 529, 147173.	3.1	25
497	High-efficiency cathode potassium compensation and interfacial stability improvement enabled by dipotassium squarate for potassium-ion batteries. Energy and Environmental Science, 2022, 15, 3015-3023.	15.6	25
498	Structure and electrochemical characteristics of LiMn0.7M0.3O2 (M=Ti, V, Zn, Mo, Co, Mg, Cr). Journal of Alloys and Compounds, 2003, 348, 231-235.	2.8	24
499	Polyhedral Magnetite Nanocrystals with Multiple Facets: Facile Synthesis, Structural Modelling, Magnetic Properties and Application for High Capacity Lithium Storage. Chemistry - A European Journal, 2012, 18, 488-497.	1.7	24
500	Determination of glyphosate and aminomethylphosphonic acid in soybean samples by high performance liquid chromatography using a novel fluorescent labeling reagent. Analytical Methods, 2013, 5, 6465.	1.3	24
501	Preparation of NiCo ₂ O ₄ Nanosheet Arrays and its High Catalytic Performance for H ₂ O ₂ Electroreduction. Fuel Cells, 2015, 15, 298-305.	1.5	24
502	An Improved Metalâ€ŧo‣igand Charge Transfer Mechanism for Photocatalytic Hydrogen Evolution. ChemSusChem, 2019, 12, 4221-4228.	3.6	24
503	Improved the specificity of peroxidase-like carbonized polydopamine nanotubes with high nitrogen doping for glutathione detection. Sensors and Actuators B: Chemical, 2021, 341, 129987.	4.0	24
504	Oxygen redox chemistry in lithium-rich cathode materials for Li-ion batteries: Understanding from atomic structure to nano-engineering. Nano Materials Science, 2022, 4, 322-338.	3.9	24

#	Article	IF	CITATIONS
505	Synthesis of Layered-Structure LiMn[sub 1â^x]Cr[sub x]O[sub 2] by the Pechini Method and Characterization as a Cathode for Rechargeable Li/LiMnO[sub 2] Cells. Journal of the Electrochemical Society, 2002, 149, A792.	1.3	23
506	Deformation behaviors and mechanism of Ni–Co–Nb–Ta bulk metallic glasses with high strength and plasticity. Journal of Materials Research, 2007, 22, 869-875.	1.2	23
507	Nitrogen doped yolk-shell carbon spheres as cathode host for lithium-sulfur battery. Journal of Alloys and Compounds, 2018, 747, 283-292.	2.8	23
508	Squalene-derived sulfur-rich copolymer@ 3D graphene-carbon nanotube network cathode for high-performance lithium-sulfur batteries. Polyhedron, 2019, 162, 147-154.	1.0	23
509	TEMPO-Ionic Liquids as Redox Mediators and Solvents for Li–O ₂ Batteries. Journal of Physical Chemistry C, 2020, 124, 5087-5092.	1.5	23
510	N, P Codoped Hollow Carbon Nanospheres Decorated with MoSe ₂ Ultrathin Nanosheets for Efficient Potassium-Ion Storage. ACS Applied Materials & Interfaces, 2022, 14, 12551-12561.	4.0	23
511	Electrochemical performance of nanocrystalline lead oxide in VRLA batteries. Journal of Alloys and Compounds, 2001, 327, 141-145.	2.8	22
512	Debye temperature of 4 <i>H</i> -SiC determined by X-ray powder diffraction. Powder Diffraction, 2009, 24, 311-314.	0.4	22
513	Sulfonation of graphene nanosheet-supported platinum via a simple thermal-treatment toward its oxygen reduction activity in acid medium. International Journal of Hydrogen Energy, 2012, 37, 14205-14210.	3.8	22
514	Synergistic effect of metal ion additives on graphitic carbon nitride nanosheet-templated electrodeposition of Cu@CuO for enzyme-free glucose detection. Journal of Alloys and Compounds, 2018, 745, 155-163.	2.8	22
515	display="inline"> <mml:mrow><mml:msub><mml:mrow><mml:mi>E</mml:mi></mml:mrow><mml:m Spectra of Quasi-One-Dimensional Antiferromagnet <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>BaCo</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mi>BaCo</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mro< td=""><td>n>82.9 سانسه>2د</td><td>22</td></mml:mro<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math </mml:m </mml:msub></mml:mrow>	n>82.9 سانسه>2د	22
516	mathvariant="normal">VUnderstanding of nanoscale periodic stripes on fracture surface of metallic glasses. Journal of Applied Physics, 2009, 106, 113528.	1.1	21
517	Voltammetric simultaneous ion flux measurements platform for Cu2+, Pb2+ and Hg2+ near rice root surface: Utilizing carbon nitride heterojunction film modified carbon fiber microelectrode. Sensors and Actuators B: Chemical, 2018, 256, 98-106.	4.0	21
518	A Stable Quasi‣olid‣tate Sodium–Sulfur Battery. Angewandte Chemie, 2018, 130, 10325-10329.	1.6	21
519	Recent advances in "water in salt―electrolytes for aqueous rechargeable monovalent-ion (Li+, Na+,) Tj ETQq1	10.7843 7.1	14 rgBT /0\ 21
520	Mesoporous organo-silica nanoarray for energy storage media. Electrochemistry Communications, 2007, 9, 71-75.	2.3	20
521	Ductile to brittle transition in dynamic fracture of brittle bulk metallic glass. Journal of Applied Physics, 2008, 103, .	1.1	20
522	The sublimation growth of AlN fibers: transformations inÂmorphology & fiber direction. Applied Physics A: Materials Science and Processing, 2009, 94, 173-177.	1.1	20

#	Article	IF	CITATIONS
523	High capacity spherical Li[Li0.24Mn0.55Co0.14Ni0.07]O2 cathode material for lithium ion batteries. Solid State Ionics, 2013, 233, 12-19.	1.3	20
524	Coral-like V2O5 nanowhiskers as high-capacity cathode materials for lithium-ion batteries. RSC Advances, 2013, 3, 5069.	1.7	20
525	ZnO nanocrystals with a high percentage of exposed reactive facets for enhanced gas sensing performance. Sensors and Actuators B: Chemical, 2013, 186, 286-292.	4.0	20
526	Hierarchical Ru nanospheres as highly effective cathode catalysts for Li–O2batteries. Journal of Materials Chemistry A, 2015, 3, 18384-18388.	5.2	20
527	Atomic-scale identification of influencing factors of sodium dendrite growth on different current collectors. Journal of Materials Chemistry A, 2020, 8, 10199-10205.	5.2	20
528	Enhanced confinement synthesis of atomically dispersed Fe-N-C catalyst from resin polymer for oxygen reduction. Journal of Energy Chemistry, 2022, 65, 630-636.	7.1	20
529	Flexible sodium-ion capacitors boosted by high electrochemically-reactive and structurally-stable Sb2S3 nanowire/Ti3C2Tx MXene film anodes. Nano Research, 2023, 16, 5592-5600.	5.8	20
530	Structure characteristics and lithium ionic conductivity of La(0.57â^'2x/3)SrxLi0.3TiO3 perovskites. Journal of Materials Science, 2000, 35, 4289-4291.	1.7	19
531	Preparation and properties of spherical LiNi0.75Co0.25O2 as a cathode for lithium-ion batteries. Electrochimica Acta, 2004, 50, 435-441.	2.6	19
532	Novel cysteic acid/reduced graphene oxide composite film modified electrode for the selective detection of trace silver ions in natural waters. Analytical Methods, 2013, 5, 5812.	1.3	19
533	Genome-wide identification of lineage-specific genes within Caenorhabditis elegans. Genomics, 2015, 106, 242-248.	1.3	19
534	Ultra-high sensitive voltammetric sensor modified by largely oxygenous functionalized ultrathin carbon nitride nanosheets for detection of Cu (II). Sensors and Actuators B: Chemical, 2017, 242, 897-903.	4.0	19
535	Stable and Efficient Nitrogen ontaining Carbonâ€Based Electrocatalysts for Reactions in Energy onversion Systems. ChemSusChem, 2018, 11, 2267-2295.	3.6	19
536	Highly Efficient Adsorption of Bilirubin by Ti ₃ C ₂ T _x MXene. Chemistry - an Asian Journal, 2021, 16, 1949-1955.	1.7	19
537	Behavior of carbon nanotubes under high pressure and high temperature. Journal of Materials Research, 2000, 15, 560-563.	1.2	18
538	Multiple-ion-doped lithium nickel oxides as cathode materials for lithium-ion batteries. Journal of Power Sources, 2003, 119-121, 189-194.	4.0	18
539	Porous carbon particles derived from natural peanut shells as lithium ion battery anode and its electrochemical properties. Electronic Materials Letters, 2014, 10, 819-826.	1.0	18
540	3D Freeâ€Standing NiCo ₂ O ₄ @graphene Foam for Highâ€Performance Supercapacitors. Energy Technology, 2016, 4, 737-743.	1.8	18

#	Article	IF	CITATIONS
541	Ultrathin Porous NiCo ₂ O ₄ Nanosheets for Lithium–Oxygen Batteries: An Excellent Performance Deriving from an Enhanced Solution Mechanism. ACS Applied Energy Materials, 2019, 2, 4215-4223.	2.5	18
542	Double Wall Carbon Nanotubes with an Inner Diameter of 0.4 nm. Chemical Vapor Deposition, 2003, 9, 119-121.	1.4	17
543	Electrochemical properties of nanosize Sn-coated graphite anodes in lithium-ion cells. Journal of Applied Electrochemistry, 2004, 34, 187-190.	1.5	17
544	Growth and lithium storage properties of vertically aligned carbon nanotubes. Metals and Materials International, 2006, 12, 413-416.	1.8	17
545	Comparative consideration of axial stability of single- and double-walled carbon nanotube and its inner and outer tubes. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 41, 202-208.	1.3	17
546	Electrochemical properties of Na/Ni3S2 cells with liquid electrolytes using various sodium salts. Current Applied Physics, 2011, 11, S11-S14.	1.1	17
547	LiNi0.4Co0.3Mn0.3O2 thin film electrode by aerosol deposition. Nanoscale Research Letters, 2012, 7, 64.	3.1	17
548	Bismuth Nanoparticles Anchored on Ti ₃ C ₂ T _x MXene Nanosheets for Highâ€Performance Sodiumâ€ion Batteries. Chemistry - an Asian Journal, 2021, 16, 3774-3780.	1.7	17
549	Lithium Storage Properties of Ball Milled Ni-57 mass%Sn Alloy. Materials Transactions, 2002, 43, 63-66.	0.4	16
550	Electrochemical properties of carbon nanotube-dispersed PEO-LiX electrolytes. Metals and Materials International, 2006, 12, 69-73.	1.8	16
551	Solvothermal Synthesis of Ternary Sulfides of Sb2 â^' xBi x S3(x = 0.4, 1) with 3D Flower-Like Architectures. Nanoscale Research Letters, 2010, 5, 364-9.	3.1	16
552	The influence of compositional change of 0.3Li2MnO3·0.7LiMn1â^'xNiyCo0.1O2 (0.2â‰æâ‰ 6 .5, y=xâ^'0.1) cathode materials prepared by co-precipitation. Journal of Power Sources, 2011, 196, 3439-3442.	4.0	16
553	Lithiumâ€Sulfur Batteries: Toward High Performance Lithium–Sulfur Batteries Based on Li ₂ S Cathodes and Beyond: Status, Challenges, and Perspectives (Adv. Funct. Mater.) Tj ETQq1 1 0.	78 #3 14 rg	ßTL&Overloci
554	Concrete-like high sulfur content cathodes with enhanced electrochemical performance for lithium-sulfur batteries. Journal of Energy Chemistry, 2020, 42, 174-179.	7.1	16
555	Mössbauer study on LiFePO4 cathode material for lithium ion batteries. Hyperfine Interactions, 2006, 167, 767-772.	0.2	15
556	Pt1â^'Co nanoparticles as cathode catalyst for proton exchange membrane fuel cells with enhanced catalytic activity. Materials Chemistry and Physics, 2010, 124, 841-844.	2.0	15
557	Growth direction dependence of the electron spin dynamics in {111} GaAs quantum wells. Applied Physics Letters, 2012, 101, .	1.5	15
558	Propelling the polysulfide phase transformation of lithium–sulfur battery by VO2-rGO. Journal of Alloys and Compounds, 2019, 804, 549-553.	2.8	15

#	Article	IF	CITATIONS
559	Effect of glyphosate on X-ray diffraction of copper films prepared by electrochemical deposition. RSC Advances, 2019, 9, 14016-14023.	1.7	15
560	Electrochemical study on orthorhombic LiMnO2 as cathode in rechargeablelithium batteries. Journal of Applied Electrochemistry, 1999, 29, 1423-1426.	1.5	14
561	Unraveling the Promotion Effects of a Soluble Cobaltocene Catalyst with Respect to Li–O ₂ Battery Discharge. Journal of Physical Chemistry Letters, 2020, 11, 7028-7034.	2.1	14
562	A Garnetâ€Type Solidâ€Electrolyteâ€Based Molten Lithiumâ^'Molybdenumâ^'Iron(II) Chloride Battery with Advanced Reaction Mechanism. Advanced Materials, 2020, 32, e2000960.	11.1	14
563	Recent research on emerging organic electrode materials for energy storage. , 2022, 1, 100009.		14
564	Structure and electrochemistry of LiCrxMn1â^'xO2 cathode for lithium-ion batteries. Solid State Ionics, 2002, 148, 359-366.	1.3	13
565	The electrochemical properties of Li/TEGDME/MoS2 cells using multi-wall carbon nanotubes as a conducting agent. Research on Chemical Intermediates, 2010, 36, 749-759.	1.3	13
566	Bio-inspired Self-Healing Electrolytes for Li-S Batteries. CheM, 2017, 3, 388-389.	5.8	13
567	Solar Cells: Facile Synthesis of Crumpled Nitrogenâ€Doped MXene Nanosheets as a New Sulfur Host for Lithium–Sulfur Batteries (Adv. Energy Mater. 13/2018). Advanced Energy Materials, 2018, 8, 1870060.	10.2	13
568	Removal of extremely low concentration cobalt by intercalation composite material of carbon nitride/titanium dioxide. Journal of Hazardous Materials, 2021, 415, 125680.	6.5	13
569	Hierarchical Oα-rich Co3O4 nanoarray anchored on Ni foam with superior lithiophilicity enabling ultrastable lithium metal batteries. Chemical Engineering Journal, 2022, 436, 134698.	6.6	13
570	Electrochemical properties of orthorhombic LiMnO2 prepared by one-step middle-temperature solid-state reaction. Journal of Alloys and Compounds, 2002, 346, 255-259.	2.8	12
571	First-principles study of structural evolution of medium-sized SiN clusters (41 N 50) within stuffed fullerene cages. European Physical Journal D, 2007, 45, 289-294.	0.6	12
572	Effect of Topological Defects on Buckling Behavior of Single-walled Carbon Nanotube. Nanoscale Research Letters, 2010, 6, 28.	3.1	12
573	Electrochemical properties of all solid state Li/S battery. Materials Research Bulletin, 2012, 47, 2827-2829.	2.7	12
574	Synthesis of MnO2/poly-o-phenylenediamine composite and its application in supercapacitors. Electrochimica Acta, 2013, 106, 301-306.	2.6	12
575	Production of MoS2/CoSe2 hybrids and their performance as oxygen reduction reaction catalysts. Journal of Materials Science, 2017, 52, 3188-3198.	1.7	12
576	Induction of hemocyte apoptosis by Ovomermis sinensis: Implications for host immune suppression. Journal of Invertebrate Pathology, 2018, 159, 41-48.	1.5	12

#	Article	IF	CITATIONS
577	Multi-ion Strategy toward Highly Durable Calcium/Sodium–Sulfur Hybrid Battery. Nano Letters, 2021, 21, 3548-3556.	4.5	12
578	Structure characterisation and lithium insertion in La0.33NbO3 perovskite. Solid State Ionics, 1999, 124, 37-43.	1.3	11
579	Synthesis of CdSe microspheres via solvothermal process in a mixed solution. Journal of Alloys and Compounds, 2010, 495, 158-161.	2.8	11
580	Label-free impedimetric immunosensor for sensitive detection of 2,4-dichlorophenoxybutyric acid (2,4-DB) in soybean. Talanta, 2012, 101, 226-232.	2.9	11
581	Modified Tetrathiafulvalene as an Organic Conductor for Improving Performances of Liâ [~] O 2 Batteries. Angewandte Chemie, 2017, 129, 8625-8629.	1.6	11
582	Model predictive control based balancing strategy for series-connected lithium-ion battery packs. , 2017, , .		11
583	Solvothermal Synthesis of a Hollow Micro-Sphere LiFePO4/C Composite with a Porous Interior Structure as a Cathode Material for Lithium Ion Batteries. Nanomaterials, 2017, 7, 368.	1.9	11
584	Highly Reversible Lithium Polysulfide Semiliquid Battery with Nitrogenâ€Rich Carbon Fiber Electrodes. Energy Technology, 2018, 6, 251-256.	1.8	11
585	Phase transition induced synthesis of one dimensional In1â^'xZnxOy heterogeneous nanofibers for superior lithium ion storage. Applied Surface Science, 2019, 470, 340-347.	3.1	11
586	Self-Assembled NbOPO ₄ Nanosheet/Reduced Graphene Oxide Heterostructure for Capacitive Desalination. ACS Applied Nano Materials, 2021, 4, 12629-12639.	2.4	11
587	Stoichiometry-controlled high-performance LiCoO2 electrode materials prepared by a spray solution technique. Journal of Power Sources, 2003, 119-121, 195-200.	4.0	10
588	Characterization of Nanosize Molybdenum Trisulfide for Lithium Batteries and MoS[sub 3] Structure Confirmation via Electrochemistry. Electrochemical and Solid-State Letters, 2007, 10, A204.	2.2	10
589	Consideration of mechanical properties of single-walled carbon nanotubes under various loading conditions. Journal of Nanoparticle Research, 2010, 12, 537-543.	0.8	10
590	Cocore–Ptshell nanoparticles as cathode catalyst for PEM fuel cells. Journal of Solid State Electrochemistry, 2012, 16, 1105-1110.	1.2	10
591	Formation mechanism of Type 2 micropipe defects in 4H–SiC crystals. CrystEngComm, 2013, 15, 1307-1313.	1.3	10
592	Polypyrrole single and double-shelled nanospheres templated by pyrrole–Hg(II) complex: Synthesis, characterization, formation mechanism and electrochemical performance. Synthetic Metals, 2014, 197, 126-133.	2.1	10
593	Effect of sulfur content in a sulfur-activated carbon composite on the electrochemical properties of a lithium/sulfur battery. Materials Research Bulletin, 2015, 69, 24-28.	2.7	10
594	Rational Design of Core–Shell-Structured Particles by a One-Step and Template-Free Process for High-Performance Lithium/Sodium-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 22232-22240.	1.5	10

#	Article	IF	CITATIONS
595	A Robust Transition-Metal Sulfide Anode Material Enabled by Truss Structures. CheM, 2020, 6, 334-336.	5.8	10
596	Nitronyl Nitroxide-Based Redox Mediators for Li-O2 Batteries. Journal of Physical Chemistry C, 2021, 125, 2824-2830.	1.5	10
597	Transverse impedances and collective instabilities in a heavy ion accelerator. Physical Review Accelerators and Beams, 2018, 21, .	0.6	10
598	Temperature dependence of the A1(LO) and E2 (high) phonons in hexagonal InN nanowires. Journal of Applied Physics, 2007, 101, 124302.	1.1	9
599	Preparation of Low Loading Pt/C Catalyst by Carbon Xerogel Method for Ethanol Electrooxidation. Catalysis Letters, 2008, 122, 111-114.	1.4	9
600	Parametric investigation of particle acceleration in high enthalpy conical nozzle flows for coating applications. Shock Waves, 2008, 17, 351-362.	1.0	9
601	Synthesis and characterization of SrBi4Ti4O15ferroelectric filler based composite polymer electrolytes for lithium ion batteries. Polymer Bulletin, 2008, 60, 351-361.	1.7	9
602	Crack in thin metallic glassy sheet: Shear direction periodically changed fracture path. Journal of Applied Physics, 2008, 104, .	1.1	9
603	Molecular dynamic investigation of length dependency of single-walled carbon nanotube. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 43, 202-206.	1.3	9
604	Preparation and Enhanced Electrochemical Performance of MnO ₂ Nanosheets for Supercapacitors. Journal of the Chinese Chemical Society, 2012, 59, 1275-1279.	0.8	9
605	Numerical simulation of flow fields induced by a supersonic projectile moving in tubes. Shock Waves, 2012, 22, 417-425.	1.0	9
606	Temperature dependent electric field control of the electron spin relaxation in (111)A GaAs quantum wells. Applied Physics Letters, 2013, 102, .	1.5	9
607	Electron spin dephasing and optical pumping of nuclear spins in GaN. Physical Review B, 2014, 90, .	1.1	9
608	Scalable Preparation of LiFePO ₄ /C Nanocomposites with sp ² oordinated Carbon Coating as Highâ€Performance Cathode Materials for Lithiumâ€Ion Batteries. ChemElectroChem, 2015, 2, 2096-2103.	1.7	9
609	Hydrothermal Synthesis of Multiwalled Carbon Nanotube–Zinc Manganate Nanoparticles as Anode Materials for Lithium Ion Batteries. ChemPlusChem, 2016, 81, 399-405.	1.3	9
610	Co ₃ O ₄ -Carbon Cloth free standing cathode for lithium sulfur battery. IOP Conference Series: Materials Science and Engineering, 2017, 222, 012013.	0.3	9
611	In-situ synthesis of Ni–Co–S nanoparticles embedded in novel carbon bowknots and flowers with pseudocapacitance-boosted lithium ion storage. Nanotechnology, 2019, 30, 155701.	1.3	9
612	Glucose Sensors Based on Core@Shell Magnetic Nanomaterials and Their Application in Diabetes Management: A Review. Current Pharmaceutical Design, 2015, 21, 5359-5368.	0.9	9

#	Article	IF	CITATIONS
613	Engineering a heteroatom-doped multidimensional carbon network for dendrite-free lithium metal anode. Materials Today Energy, 2022, 24, 100949.	2.5	9
614	Bulk GaN single crystals: a reinvestigation of growth mechanism using Li3N flux. Applied Physics A: Materials Science and Processing, 2006, 85, 169-172.	1.1	8
615	Electrochemical properties of SnO2 nanowires prepared by a simple heat treatment of Sn–Ag alloys. Journal of Alloys and Compounds, 2009, 483, 422-424.	2.8	8
616	A multifunctional polyimide nanofiber separator with a self-closing polyamide–polyvinyl alcohol top layer with a Turing structure for high-performance lithium–sulfur batteries. Materials Advances, 2020, 1, 3449-3459.	2.6	8
617	Effects of temperature oscillations on the growth of carbon nanotubes by chemical vapor deposition. Applied Physics Letters, 2000, 76, 828-830.	1.5	7
618	Electron Transfer Behavior of Monolayer Protected Nanoclusters and Nanowires of Silver and Gold. Journal of Nanoscience and Nanotechnology, 2006, 6, 3464-3469.	0.9	7
619	Strong photon-mixing of terahertz waves in semiconductor quantum wells induced by Rashba spin–orbit coupling. Nanotechnology, 2008, 19, 465401.	1.3	7
620	Nanostructured Metal Oxides as Electrode Materials for Electrochemical Capacitors. Journal of Nanoscience and Nanotechnology, 2009, 9, 1263-1267.	0.9	7
621	The spin–orbit interaction enhanced terahertz absorption in graphene around the K point. Microelectronics Journal, 2009, 40, 857-859.	1.1	7
622	Transcriptome Sequencing Analysis and Functional Identification of Sex Differentiation Genes from the Mosquito Parasitic Nematode, Romanomermis wuchangensis. PLoS ONE, 2016, 11, e0163127.	1.1	7
623	The tuned absorptance in multilayer graphene-dielectric structures by intraband transition. Journal of Applied Physics, 2017, 122, .	1.1	7
624	A new process for fabrication of metal-hydride electrodes for nickel–metal hydride batteries. Journal of Alloys and Compounds, 2002, 330-332, 760-765.	2.8	6
625	Electrochemical and in situ synchrotron X-ray diffraction studies of Li[Li0.3Cr0.1Mn0.6]O2 cathode materials. Solid State Ionics, 2004, 167, 183-189.	1.3	6
626	Growth of GaN Single Crystals by Li ₃ N Flux with Mn as Addition. Crystal Growth and Design, 2008, 8, 2775-2779.	1.4	6
627	Growth, Characterization and Technological Applications of Semiconductor SnO ₂ Nanotubes and In ₂ O ₃ Nanowires. Journal of Nanoscience and Nanotechnology, 2009, 9, 1144-1147.	0.9	6
628	Novel reagents for quantitative analysis of valiolamine in biological samples by high-performance liquid chromatography with pre-column UV derivatization. Talanta, 2010, 81, 1613-1618.	2.9	6
629	Hydrothermal synthesis of FeP4 and Fe2P-loaded α-Fe2O3 hollow spheres and applications in gas sensors. Sensors and Actuators B: Chemical, 2014, 194, 27-32.	4.0	6
630	Nutrient-dependent patterns in the sex ratio of <i>Ovomermis sinensis</i> (Nematoda: Mermithidae), a biological control agent of <i>Helicoverpa armigera</i> (Lepidoptera: Noctuidae). Biocontrol Science and Technology, 2016, 26, 1062-1072.	0.5	6

#	Article	IF	CITATIONS
631	Germanium-based multiphase material as a high-capacity and cycle-stable anode for lithium-ion batteries. RSC Advances, 2016, 6, 89176-89180.	1.7	6
632	A comparative study of battery balancing strategies for different battery operation processes. , 2016, , .		6
633	Localized Waterâ€Inâ€Salt Electrolyte for Aqueous Lithiumâ€Ion Batteries. Angewandte Chemie, 2021, 133, 20118-20126.	1.6	6
634	Pt/C Catalysts Using Different Carbon Supports for the Cathode of PEM Fuel Cells. Advanced Science Letters, 2011, 4, 115-120.	0.2	6
635	Nanosize SnO2 for Highly Responsive Gas Sensor Application. Sensor Letters, 2010, 8, 243-246.	0.4	6
636	Spray Pyrolysis Technique for Fabrication of Nano-Sized Spherical Agglomerated Oxide Powders for Batteries. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 325-330.	0.1	5
637	Low energy cluster beam deposited BN films as the cascade for field emission. European Physical Journal D, 2005, 34, 255-257.	0.6	5
638	Determination of Lysozyme Using Microcantilever Sensor Based on Atomic Force Microscopy. Chinese Journal of Analytical Chemistry, 2010, 38, 1771-1775.	0.9	5
639	Interface interaction within nanopores in thin films of an amphiphilic block copolymer and CTAB. Journal of Colloid and Interface Science, 2011, 354, 219-225.	5.0	5
640	Surface-migration driving uniform amorphous shell on crystalline nanowire: the case of SiC/SiOx core–shell nanowires. CrystEngComm, 2013, 15, 5082.	1.3	5
641	The Effect of Carbon Coating on the Electrochemical Performance of Nanosized Li2FeSiO4Cathode Materials. Acta Physica Polonica A, 2013, 123, 279-282.	0.2	5
642	Pomegranate‣tructured Silica/Sulfur Composite Cathodes for Highâ€Performance Lithium–Sulfur Batteries. Chemistry - an Asian Journal, 2018, 13, 568-576.	1.7	5
643	Conformal carbon coating on WS2 nanotubes for excellent electrochemical performance of lithium-ion batteries. Nanotechnology, 2019, 30, 035401.	1.3	5
644	Polyolefinâ€Based Janus Separator for Rechargeable Sodium Batteries. Angewandte Chemie, 2020, 132, 16868-16877.	1.6	5
645	Transverse broadband impedance reduction techniques in a heavy ion accelerator. Physical Review Accelerators and Beams, 2020, 23, .	0.6	5
646	Heat treatment investigations on the laser synthesized amorphous Si/C/N nanocomposite powders. Journal of Materials Science, 1999, 34, 3047-3052.	1.7	4
647	Electrochemical Performance of Nanocrystalline SnO ₂ -Carbon Nanotube Composites as Anode in Lithium-Ion Cells. Journal of Nanoscience and Nanotechnology, 2009, 9, 1474-1478.	0.9	4
648	Evaluation of Sulfur and Multi-Walled Carbon Nanotube Composite Synthesized by Dissolution and Precipitation for Li/S Batteries. Journal of Nanoscience and Nanotechnology, 2012, 12, 5794-5798.	0.9	4

#	Article	IF	CITATIONS
649	Observation of symmetrically decay of A1(longitudinal optical) mode in free-standing GaN bulk single crystal from Li3N flux method. Applied Physics Letters, 2013, 102, 011916.	1.5	4
650	Fabrication of nanoelectrode ensembles formed via PAN–co–PAA self-assembly and selective voltammetric detection of uric acid in biologic samples. Sensors and Actuators B: Chemical, 2013, 181, 194-201.	4.0	4
651	Porous LiFePO4/C Microspheres as High-Power Cathode Materials for Lithium Ion Batteries. Journal of Nanoscience and Nanotechnology, 2013, 13, 3655-3659.	0.9	4
652	Experimental analysis and modeling of temperature dependence of lithium-ion battery direct current resistance for power capability prediction. , 2017, , .		4
653	Mxeneâ€Directed Dual Amphiphilicity at Liquid, Solid, and Gas Interfaces. Chemistry - an Asian Journal, 2018, 13, 3850-3854.	1.7	4
654	Constructing Sn(<scp>ii</scp>)-doped SrNb ₂ O ₆ for visible light response driven H ₂ and O ₂ evolution from water. Catalysis Science and Technology, 2019, 9, 3619-3622.	2.1	4
655	1,2-dithioglycol functionalised carbon nitride quantum dots as a "turn – off―fluorescent sensor for mercury ion detection. International Journal of Environmental Analytical Chemistry, 2019, 99, 796-807.	1.8	4
656	Giant magneto-optical Kerr enhancement from films on SiC due to the optical properties of the substrate. Physical Review B, 2019, 99, .	1.1	4
657	Materials Science in Australia. Advanced Materials, 2020, 32, e2001629.	11.1	4
658	Synthesis of carbon nitride quantum dots and biocompatibility evaluation using C. elegans as a model organism. Materials Today Communications, 2020, 25, 101383.	0.9	4
659	Supercool sulfur. Nature Nanotechnology, 2020, 15, 167-168.	15.6	4
660	Reaktionsmechanismen Lithiumâ€reicher Schichtâ€Kathodenmaterialien für Hochenergieâ€Lithiumâ€Ionenbatterien. Angewandte Chemie, 2021, 133, 2236-2248.	1.6	4
661	Density functional theory study on the enhanced adsorption mechanism of gaseous pollutants on Al-doped Ti2CO2 monolayer. Sustainable Materials and Technologies, 2021, 29, e00294.	1.7	4
662	Beam loading effects and microwave instability in the booster ring of a high intensity heavy-ion accelerator facility. Physical Review Accelerators and Beams, 2020, 23, .	0.6	4
663	Formation and stability of large B 6O clusters with icosahedral structure. European Physical Journal D, 2001, 16, 245-248.	0.6	3
664	BENDING STABILITY OF INNER AND OUTER TUBES OF DOUBLE-WALLED CARBON NANOTUBE. International Journal of Nanoscience, 2009, 08, 9-13.	0.4	3
665	Synthesis and properties of Ti–O based nanowires. Journal of Alloys and Compounds, 2010, 504, S361-S363.	2.8	3
666	Vanadium bound exciton luminescence in 6H-SiC. Applied Physics Letters, 2012, 101, 151903.	1.5	3

#	Article	IF	CITATIONS
667	Practical Molecular Dynamic Simulation of Monolayer Graphene with Consideration of Structural Defects. Journal of Nanoscience and Nanotechnology, 2012, 12, 1398-1401.	0.9	3
668	Self-made non-enzymatic silver electrode from recordable CDs for fast detection of glucose in blood. Sensors and Actuators B: Chemical, 2013, 177, 555-561.	4.0	3
669	Determination of alkylamine carbonate nonionic–anion oil displacement agent in oil-field water using HPLC after derivatization with 4-methoxybenzenesulfonyl fluoride. Analytical Methods, 2013, 5, 729-734.	1.3	3
670	Synthesis of Highly Ordered Mesoporous Co3O4 for Gas Sensing. Journal of Nanoscience and Nanotechnology, 2013, 13, 3354-3359.	0.9	3
671	DETERMINATION OF PROLINE, HYDROXYPROLINE, AND N–ETHYLGLYCINE IN URINE BY USING A NEW HPLC LABELING REAGENT, AND ITS APPLICATION IN DETECTION OF TUMOR MARKERS. Journal of Liquid Chromatography and Related Technologies, 2014, 37, 1731-1749.	0.5	3
672	Data in support of genome-wide identification of lineage-specific genes within Caenorhabditis elegans. Data in Brief, 2015, 4, 595-601.	0.5	3
673	Development of a Disposable Label-Free Impedance Immunosensor for Direct and Sensitive Clenbuterol Determination in Pork. Food Analytical Methods, 2016, 9, 1781-1788.	1.3	3
674	Platinum Nanoparticles Anchored on TiO ₂ /C Nanowires as a High Performance Catalyst for Hydrogen Peroxide Eletroreduction. Fuel Cells, 2016, 16, 646-651.	1.5	3
675	Enhanced and one-way absorptance of LiNiO2 thin films in one-dimensional photonic crystals. Journal of Applied Physics, 2017, 122, .	1.1	3
676	Submicroreactors: Enhanced Hydrogenation Performance over Hollow Structured Coâ€CoO <i>x</i> @N Capsules (Adv. Sci. 22/2019). Advanced Science, 2019, 6, 1970135.	5.6	3
677	BODIPY-Appended Pt(II) Complexes with High Toxicities and Anti-chemoresistance Performances in a Cisplatin Resistant <i>In Vivo</i> Model. Inorganic Chemistry, 2021, 60, 10047-10055.	1.9	3
678	Achieving Highâ€Performance 3D K ⁺ â€Preâ€intercalated Ti ₃ C ₂ T _{<i>x</i>} MXene for Potassiumâ€Ion Hybrid Capacitors via Regulating Electrolyte Solvation Structure. Angewandte Chemie, 2021, 133, 26450-26457.	1.6	3
679	Fabrication and enhanced electrochemical performances of MoO3/graphene composite as anode material for lithium-ion batteries. International Journal of Smart Grid and Clean Energy, 2014, , .	0.4	3
680	Streamline Sulfur Redox Reactions to Achieve Efficient Roomâ€Temperature Sodium–Sulfur Batteries. Angewandte Chemie, 2022, 134, .	1.6	3
681	Rare Earth Element (La) Doped LiNiVO ₄ as a Cathode Material for Secondary Lithium Ion Cells. Materials Science Forum, 1999, 315-317, 105-112.	0.3	2
682	Mechanically Milled Nanocrystalline Ni ₃ Sn ₄ and FeSi ₂ Alloys as an Anode Material for Li-Ion Batteries. Materials Science Forum, 2001, 360-362, 595-602.	0.3	2
683	Li Storage Properties of Ag and SnO ₂ Nanopowders Synthesized from Reverse Micelles. Journal of Metastable and Nanocrystalline Materials, 2005, 26, 1-7.	0.1	2
684	Synthesis of functional oxides by a novel mechanical milling–electric discharge method. Journal of Materials Chemistry, 2006, 16, 4488-4493.	6.7	2

#	Article	IF	CITATIONS
685	Facile synthesis of tin oxide nanofibres. Current Applied Physics, 2009, 9, e176-e179.	1.1	2
686	Hydrothermally Processed Oxide Nanostructures and Their Lithium–ion Storage Properties. Nanoscale Research Letters, 2010, 5, 1841-1845.	3.1	2
687	Magnetization Studies of K0.8Fe1.7Se2 Single Crystals. Journal of Superconductivity and Novel Magnetism, 2011, 24, 2033-2036.	0.8	2
688	Synthesis and electrochemical performance of LiMnxFexâ^'1PO4/C cathode material for lithium secondary batteries. Metals and Materials International, 2011, 17, 817-821.	1.8	2
689	Batteries: 3D Hyperbranched Hollow Carbon Nanorod Architectures for High-Performance Lithium-Sulfur Batteries (Adv. Energy Mater. 8/2014). Advanced Energy Materials, 2014, 4, n/a-n/a.	10.2	2
690	High-Specific-Capacitance Supercapacitor Based on Vanadium Oxide Nanoribbon. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-4.	1,1	2
691	Identification and analysis of retrogenes in the East Asian nematode Caenorhabditis sp. 5 genome. Genome, 2015, 58, 349-355.	0.9	2
692	Energy Storage Technologies for Solar Photovoltaic Systems. Green Energy and Technology, 2016, , 231-251.	0.4	2
693	Next-Generation Rechargeable Batteries: Challenges for Developing Rechargeable Room-Temperature Sodium Oxygen Batteries (Adv. Mater. Technol. 9/2018). Advanced Materials Technologies, 2018, 3, 1870035.	3.0	2
694	Electrochemically assisted synthesis of poly(3,4-dihydroxyphenylalanine) fluorescent organic nanoparticles for sensing applications. New Journal of Chemistry, 2020, 44, 7823-7831.	1.4	2
695	Optimization of iron removal in water by nanobubbles using response surface methodology. Water Science and Technology: Water Supply, 2021, 21, 1608-1617.	1.0	2
696	Enantioselective recognition of amino acid based on electrochemical deposition and X-ray diffraction technology. Journal of Inorganic Biochemistry, 2021, 218, 111398.	1.5	2
697	Cloning and expression analysis of the DEAD-box/RNA helicase Oslaf-1 in Ovomermis sinensis. PLoS ONE, 2018, 13, e0192101.	1.1	2
698	Rational Electrolyte Design toward Cyclability Remedy for Roomâ€Temperature Sodium–Sulfur Batteries. Angewandte Chemie, 2022, 134, .	1.6	2
699	Structural and electrochemical characteristics of Li/sub 1+x/Mn/sub 2+x/O/sub 4/ and LiMn/sub 2/O/sub 4-Î′/ for secondary lithium batteries. , 0, , .		1
700	Li Storage Properties of Carbon Nanotubes Prepared by Chemical Vapour Deposition. Journal of Metastable and Nanocrystalline Materials, 2002, 12, 18-26.	0.1	1
701	Studies of the Electrochemical Properties of Nanosize Co ₃ O ₄ Oxide as Anode Material for Lithium-Ion Batteries. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 625-628.	0.1	1
702	STRUCTURAL, MICRO STRUCTURAL AND ELECTRICAL PROPERTIES COMPARISON OF PZT FILMS DEPOSITED ON DIFFERENT BOTTOM ELECTRODES. Integrated Ferroelectrics, 2006, 80, 237-243.	0.3	1

#	Article	IF	CITATIONS
703	Consideration of Bending and Buckling Behaviors of Monolayer and Multilayer Graphene Sheets. Journal of Nanoscience and Nanotechnology, 2012, 12, 1395-1397.	0.9	1
704	Lithium‣ulfur Batteries: Fabrication of Nâ€doped Graphene–Carbon Nanotube Hybrids from Prussian Blue for Lithium–Sulfur Batteries (Adv. Energy Mater. 8/2017). Advanced Energy Materials, 2017, 7, .	10.2	1
705	\$\$hbox {Mn}_{3}hbox {O}_{4}\$\$ Mn 3 O 4 Nanosheet and GNS– \$\$hbox {Mn}_{3}. Arabian Journal for Science and Engineering, 2017, 42, 4281-4289.	1.7	1
706	Solid Electrolytes: A Garnetâ€Type Solidâ€Electrolyteâ€Based Molten Lithiumâ^'Molybdenumâ^'Iron(II) Chloride Battery with Advanced Reaction Mechanism (Adv. Mater. 32/2020). Advanced Materials, 2020, 32, 2070242.	11.1	1
707	Acid Treatment of Carbon Supports for Proton Exchange Membrane Fuel Cell Electrocatalyst. Advanced Science Letters, 2011, 4, 492-495.	0.2	1
708	Sulfur-Containing Polymer Cathode Materials for Li–S Batteries. Modern Aspects of Electrochemistry, 2022, , 295-330.	0.2	1
709	Synergistic effect of nanosheet structure and carbon coating engineering to enhance lithium storage performance of molybdenum niobium oxides. Materials Today Sustainability, 2022, 19, 100176.	1.9	1
710	Structure and Electrochemical Characteristics of LiMn0.7M0.3O2 (M: Ti, V, Zn, Mo, Co, Mg, Cr) ChemInform, 2003, 34, no.	0.1	0
711	Nanosized Tin Microencapsulated Graphite as Anode in Lithium-Ion Cells. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 739-744.	0.1	0
712	A novel cureless pure lead oxide plate for valve-regulated lead-acid batteries. Journal of Applied Electrochemistry, 2004, 34, 1127-1133.	1.5	0
713	Mössbauer study on LiFePO4 cathode material for lithium ion batteries. , 2006, , 767-772.		0
714	Consideration of Critical Axial Properties of Pristine and Defected Carbon Nanotubes Under Compression. Journal of Nanoscience and Nanotechnology, 2012, 12, 5025-5029.	0.9	0
715	Shape-Controlled Synthesis of Platinum Nanostructures as Electrocatalyst for PEM Fuel Cell Applications. , 2012, , 415-492.		0
716	Physical and Electrochemical Characterization of 0.3Li ₂ MnO ₃ ·0.7LiMn _{0.60} Ni <sub& Material for Li Secondary Battery. Journal of Nanoscience and Nanotechnology, 2014, 14, 7718-7722.</sub& 	kgt)@25&	lt;/6UB>Co
717	Synthesis and Characterization of Vanadium Oxide Nanotube Electrode Material for Electrochemical Capacitors. ECS Transactions, 2014, 58, 61-67.	0.3	0
718	Novel Materials and Their Synthesis. Chemistry International, 2014, 36, 26-27.	0.3	0
719	Advances in Electrochemical Energy Materials and Technologies. Electrochemical Energy Storage and Conversion, 2015, , 33-53.	0.0	0
720	Frontispiece: MoS ₂ Nanosheets Supported on 3D Graphene Aerogel as a Highly Efficient Catalyst for Hydrogen Evolution. Chemistry - A European Journal, 2015, 21, .	1.7	0

#	Article	IF	CITATIONS
721	Lithiumâ€lon Batteries: Mesoporous Germanium Anode Materials for Lithiumâ€lon Battery with Exceptional Cycling Stability in Wide Temperature Range (Small 13/2017). Small, 2017, 13, .	5.2	Ο
722	Materials Technology for Renewable Energies. Advanced Materials Technologies, 2018, 3, 1800346.	3.0	0
723	Renewable Energy Technologies for Sustainable Development. Advanced Sustainable Systems, 2018, 2, 1800109.	2.7	Ο