## Ann Carla Staver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3537205/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Global Extent and Determinants of Savanna and Forest as Alternative Biome States. Science, 2011, 334, 230-232.                                            | 12.6 | 1,039     |
| 2  | Tree cover in sub-Saharan Africa: Rainfall and fire constrain forest and savanna as alternative stable states. Ecology, 2011, 92, 1063-1072.                  | 3.2  | 342       |
| 3  | Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity.<br>Nature, 2018, 553, 194-198.                                  | 27.8 | 325       |
| 4  | Evolution of human-driven fire regimes in Africa. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 847-852.        | 7.1  | 293       |
| 5  | Browsing and fire interact to suppress tree density in an African savanna. Ecological Applications, 2009, 19, 1909-1919.                                      | 3.8  | 234       |
| 6  | Comment on $\hat{a} \in \infty$ The global tree restoration potential $\hat{a} \in \mathbf{S}$ Science, 2019, 366, .                                          | 12.6 | 185       |
| 7  | Is there a â€ <sup>~</sup> browse trap'? Dynamics of herbivore impacts on trees and grasses in an African savanna.<br>Journal of Ecology, 2014, 102, 595-602. | 4.0  | 139       |
| 8  | Integrating Theoretical Climate and Fire Effects on Savanna and Forest Systems. American Naturalist, 2012, 180, 211-224.                                      | 2.1  | 126       |
| 9  | Forest extent and deforestation in tropical Africa since 1900. Nature Ecology and Evolution, 2018, 2, 26-33.                                                  | 7.8  | 97        |
| 10 | Enhanced activity of soil nutrientâ€releasing enzymes after plant invasion: a metaâ€analysis. Ecology, 2019,<br>100, e02830.                                  | 3.2  | 89        |
| 11 | Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna. Ecology, 2015, 96, 1275-1285.             | 3.2  | 83        |
| 12 | Topâ€down determinants of niche structure and adaptation among African Acacias. Ecology Letters,<br>2012, 15, 673-679.                                        | 6.4  | 80        |
| 13 | Simply the best: the transition of savanna saplings to trees. Oikos, 2011, 120, 1448-1451.                                                                    | 2.7  | 79        |
| 14 | Fire prevents woody encroachment only at higherâ€thanâ€historical frequencies in a South African<br>savanna. Journal of Applied Ecology, 2017, 54, 955-962.   | 4.0  | 68        |
| 15 | Soils and fire jointly determine vegetation structure in an African savanna. New Phytologist, 2017, 216,<br>1151-1160.                                        | 7.3  | 62        |
| 16 | Tree cover in sub-Saharan Africa: Rainfall and fire constrain forest and savanna as alternative stable states. Ecology, 2011, 92, 1063-1072.                  | 3.2  | 60        |
| 17 | Droughtâ€response strategies of savanna herbivores. Ecology and Evolution, 2019, 9, 7047-7056.                                                                | 1.9  | 57        |
| 18 | Aridity, not fire, favors nitrogenâ€fixing plants across tropical savanna and forest biomes. Ecology,<br>2016, 97, 2177-2183.                                 | 3.2  | 55        |

ANN CARLA STAVER

| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | On the complex dynamics of savanna landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1336-E1345.                                          | 7.1  | 54        |
| 20 | Analysis of stable states in global savannas: is the <scp>CART</scp> pulling the horse? – a comment.<br>Global Ecology and Biogeography, 2015, 24, 985-987.                                      | 5.8  | 51        |
| 21 | Prediction and scale in savanna ecosystems. New Phytologist, 2018, 219, 52-57.                                                                                                                   | 7.3  | 49        |
| 22 | Rooting depth as a key woody functional trait in savannas. New Phytologist, 2020, 227, 1350-1361.                                                                                                | 7.3  | 47        |
| 23 | Historical and future global burned area with changing climate and human demography. One Earth, 2021, 4, 517-530.                                                                                | 6.8  | 43        |
| 24 | Soil texture mediates tree responses to rainfall intensity in African savannas. New Phytologist, 2018, 219, 1363-1372.                                                                           | 7.3  | 42        |
| 25 | Decadal changes in fire frequencies shift tree communities and functional traits. Nature Ecology and Evolution, 2021, 5, 504-512.                                                                | 7.8  | 41        |
| 26 | Thinner bark increases sensitivity of wetter Amazonian tropical forests to fire. Ecology Letters, 2020, 23, 99-106.                                                                              | 6.4  | 40        |
| 27 | Severe drought limits trees in a semiâ€arid savanna. Ecology, 2019, 100, e02842.                                                                                                                 | 3.2  | 37        |
| 28 | Grazer movements exacerbate grass declines during drought in an African savanna. Journal of<br>Ecology, 2019, 107, 1482-1491.                                                                    | 4.0  | 37        |
| 29 | The past, present, and future of herbivore impacts on savanna vegetation. Journal of Ecology, 2021, 109, 2804-2822.                                                                              | 4.0  | 36        |
| 30 | Limited increases in savanna carbon stocks over decades of fire suppression. Nature, 2022, 603, 445-449.                                                                                         | 27.8 | 36        |
| 31 | Spatial patterns in the global distributions of savanna and forest. Global Ecology and Biogeography, 2018, 27, 792-803.                                                                          | 5.8  | 33        |
| 32 | Global response of fire activity to late Quaternary grazer extinctions. Science, 2021, 374, 1145-1148.                                                                                           | 12.6 | 32        |
| 33 | Rootâ€niche separation between savanna trees and grasses is greater on sandier soils. Journal of<br>Ecology, 2020, 108, 2298-2308.                                                               | 4.0  | 31        |
| 34 | Spatial patterning among savanna trees in high-resolution, spatially extensive data. Proceedings of the<br>National Academy of Sciences of the United States of America, 2019, 116, 10681-10685. | 7.1  | 30        |
| 35 | History matters: tree establishment variability and species turnover in an African savanna. Ecosphere, 2011, 2, art49.                                                                           | 2.2  | 25        |
| 36 | Spatial feedbacks and the dynamics of savanna and forest. Theoretical Ecology, 2019, 12, 237-262.                                                                                                | 1.0  | 20        |

ANN CARLA STAVER

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | The role of browsers in maintaining the openness of savanna grazing lawns. Journal of Ecology, 2021, 109, 913-926.                                                                                                       | 4.0  | 20        |
| 38 | A 2000-year sediment record reveals rapidly changing sedimentation and land use since the 1960s in the Upper Mara-Serengeti Ecosystem. Science of the Total Environment, 2019, 664, 148-160.                             | 8.0  | 19        |
| 39 | Could drought constrain woody encroachers in savannas?. African Journal of Range and Forage Science, 2020, 37, 19-29.                                                                                                    | 1.4  | 18        |
| 40 | Seasonal dietary changes increase the abundances of savanna herbivore species. Science Advances, 2020, 6, .                                                                                                              | 10.3 | 16        |
| 41 | Root trait variation in African savannas. Plant and Soil, 2019, 441, 555-565.                                                                                                                                            | 3.7  | 15        |
| 42 | Tree clusters in savannas result from islands of soil moisture. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6679-6683.                                                   | 7.1  | 15        |
| 43 | Pathways of savannization in a mesic African savanna–forest mosaic following an extreme fire.<br>Journal of Ecology, 2022, 110, 902-915.                                                                                 | 4.0  | 15        |
| 44 | Interactions between Fire and Ecosystem Processes. , 2017, , 233-262.                                                                                                                                                    |      | 14        |
| 45 | Dispersal Increases the Resilience of Tropical Savanna and Forest Distributions. American Naturalist, 2020, 195, 833-850.                                                                                                | 2.1  | 13        |
| 46 | Reduced global fire activity due to human demography slows global warming by enhanced land<br>carbon uptake. Proceedings of the National Academy of Sciences of the United States of America, 2022,<br>119, e2101186119. | 7.1  | 12        |
| 47 | Palaeo-trajectories of forest savannization in the southern Congo. Biology Letters, 2019, 15, 20190284.                                                                                                                  | 2.3  | 11        |
| 48 | Disease and fire interact to influence transitions between savanna–forest ecosystems over a<br>multiâ€decadal experiment. Ecology Letters, 2021, 24, 1007-1017.                                                          | 6.4  | 11        |
| 49 | Heterogeneity in African savanna elephant distributions and their impacts on trees in Kruger National<br>Park, South Africa. Ecology and Evolution, 2021, 11, 5624-5634.                                                 | 1.9  | 11        |
| 50 | Determinants of tree cover in tropical floodplains. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191755.                                                                                        | 2.6  | 10        |
| 51 | Dispersal limitation and fire feedbacks maintain mesic savannas in Madagascar. Ecology, 2020, 101, e03177.                                                                                                               | 3.2  | 10        |
| 52 | Probabilistic Foundations of Spatial Mean-Field Models in Ecology and Applications. SIAM Journal on<br>Applied Dynamical Systems, 2020, 19, 2682-2719.                                                                   | 1.6  | 10        |
| 53 | Unifying deterministic and stochastic ecological dynamics via a landscape-flux approach. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                                   | 7.1  | 10        |
| 54 | Seasonal strategies differ between tropical and extratropical herbivores. Journal of Animal Ecology,<br>2022, 91, 681-692.                                                                                               | 2.8  | 10        |

ANN CARLA STAVER

| #  | Article                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Fire spread and the issue of community-level selection in the evolution of flammability. Journal of the<br>Royal Society Interface, 2018, 15, 20180444.                 | 3.4 | 9         |
| 56 | Woody encroachment happens via intensification, not extensification, of species ranges in an African savanna. Ecological Applications, 2021, 31, e02437.                | 3.8 | 9         |
| 57 | The environmental drivers of tree cover and forest–savanna mosaics in Southeast Asia. Ecography,<br>2022, 2022, .                                                       | 4.5 | 9         |
| 58 | Quantifying the environmental limits to fire spread in grassy ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, . | 7.1 | 7         |
| 59 | Demographic Bottlenecks and Savanna Tree Abundance. , 2017, , 161-188.                                                                                                  |     | 5         |
| 60 | Forecasting semiâ€arid biome shifts in the Anthropocene. New Phytologist, 2020, 226, 351-361.                                                                           | 7.3 | 5         |
| 61 | Long-Term Vegetation Dynamics within the Hluhluwe iMfolozi Park. , 0, , 56-79.                                                                                          |     | 3         |
| 62 | Lessons from a century of evidence-based fire management in grassy ecosystems. African Journal of<br>Range and Forage Science, 2022, 39, v-vii.                         | 1.4 | 0         |