
Wayne E Thogmartin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3537080/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ESTIMATING SITE OCCUPANCY RATES WHEN DETECTION PROBABILITIES ARE LESS THAN ONE. Ecology, 2002, 83, 2248-2255.	1.5	3,271
2	N â€Mixture Models for Estimating Population Size from Spatially Replicated Counts. Biometrics, 2004, 60, 108-115.	0.8	1,170
3	ESTIMATING ABUNDANCE FROM REPEATED PRESENCE–ABSENCE DATA OR POINT COUNTS. Ecology, 2003, 84, 777-790.	1.5	1,013
4	Designing occupancy studies: general advice and allocating survey effort. Journal of Applied Ecology, 2005, 42, 1105-1114.	1.9	1,001
5	Presenceâ€only modelling using <scp>MAXENT</scp> : when can we trust the inferences?. Methods in Ecology and Evolution, 2013, 4, 236-243.	2.2	537
6	Likelihood analysis of species occurrence probability from presenceâ€only data for modelling species distributions. Methods in Ecology and Evolution, 2012, 3, 545-554.	2.2	349
7	A BAYESIAN STATE-SPACE FORMULATION OF DYNAMIC OCCUPANCY MODELS. Ecology, 2007, 88, 1813-1823.	1.5	345
8	A HIERARCHICAL MODEL FOR SPATIAL CAPTURE–RECAPTURE DATA. Ecology, 2008, 89, 2281-2289.	1.5	344
9	Scalingâ€up camera traps: monitoring the planet's biodiversity with networks of remote sensors. Frontiers in Ecology and the Environment, 2017, 15, 26-34.	1.9	287
10	Modelling occurrence and abundance of species when detection is imperfect. Oikos, 2005, 110, 353-359.	1.2	282
11	Spatially explicit models for inference about density in unmarked or partially marked populations. Annals of Applied Statistics, 2013, 7, .	0.5	249
12	Mixture Models for Estimating the Size of a Closed Population When Capture Rates Vary among Individuals. Biometrics, 2003, 59, 351-364.	0.8	195
13	Monarch butterfly population decline in North America: identifying the threatening processes. Royal Society Open Science, 2017, 4, 170760.	1.1	191
14	Quasi-extinction risk and population targets for the Eastern, migratory population of monarch butterflies (Danaus plexippus). Scientific Reports, 2016, 6, 23265.	1.6	179
15	Spatially explicit inference for open populations: estimating demographic parameters from cameraâ€ŧrap studies. Ecology, 2010, 91, 3376-3383.	1.5	162
16	HIERARCHICAL SPATIAL MODELS OF ABUNDANCE AND OCCURRENCE FROM IMPERFECT SURVEY DATA. Ecological Monographs, 2007, 77, 465-481.	2.4	152
17	A transâ€national monarch butterfly population model and implications for regional conservation priorities. Ecological Entomology, 2017, 42, 51-60.	1.1	150
18	Estimating true instead of apparent survival using spatial <scp>C</scp> ormack– <scp>J</scp> olly– <scp>S</scp> eber models. Methods in Ecology and Evolution, 2014, 5, 1316-1326.	2.2	147

#	Article	IF	CITATIONS
19	Restoring monarch butterfly habitat in the Midwestern US: â€~all hands on deck'. Environmental Research Letters, 2017, 12, 074005.	2.2	143
20	THE ROLE OF SPECIES ABUNDANCE IN DETERMINING BREEDING ORIGINS OF MIGRATORY BIRDS WITH STABLE ISOTOPES. , 2004, 14, 1780-1788.		138
21	Trap Configuration and Spacing Influences Parameter Estimates in Spatial Capture-Recapture Models. PLoS ONE, 2014, 9, e88025.	1.1	131
22	Pesticides and pollinators: A socioecological synthesis. Science of the Total Environment, 2019, 662, 1012-1027.	3.9	130
23	A HIERARCHICAL SPATIAL MODEL OF AVIAN ABUNDANCE WITH APPLICATION TO CERULEAN WARBLERS. , 2004, 14, 1766-1779.		121
24	Program <scp>SPACECAP</scp> : software for estimating animal density using spatially explicit capture–recapture models. Methods in Ecology and Evolution, 2012, 3, 1067-1072.	2.2	114
25	Evaluation of downscaled, gridded climate data for the conterminous United States. Ecological Applications, 2016, 26, 1338-1351.	1.8	113
26	Unifying population and landscape ecology with spatial capture–recapture. Ecography, 2018, 41, 444-456.	2.1	109
27	Modelling nonâ€Euclidean movement and landscape connectivity in highly structured ecological networks. Methods in Ecology and Evolution, 2015, 6, 169-177.	2.2	104
28	The scope and severity of whiteâ€nose syndrome on hibernating bats in North America. Conservation Biology, 2021, 35, 1586-1597.	2.4	102
29	Spatial capture–recapture models for jointly estimating population density and landscape connectivity. Ecology, 2013, 94, 287-294.	1.5	91
30	A hierarchical model combining distance sampling and time removal to estimate detection probability during avian point counts. Auk, 2014, 131, 476-494.	0.7	91
31	Migratory Connectivity of a Widely Distributed Songbird, the American Redstart (Setophaga ruticilla). Ornithological Monographs, 2006, , 14-28.	1.3	88
32	Spatial capture–recapture models allowing Markovian transience or dispersal. Population Ecology, 2016, 58, 53-62.	0.7	82
33	Spring plant phenology and false springs in the conterminous US during the 21st century. Environmental Research Letters, 2015, 10, 104008.	2.2	80
34	White-nose syndrome is likely to extirpate the endangered Indiana bat over large parts of its range. Biological Conservation, 2013, 160, 162-172.	1.9	76
35	Current and Future Land Use around a Nationwide Protected Area Network. PLoS ONE, 2013, 8, e55737.	1.1	74
36	Interpreting surveys to estimate the size of the monarch butterfly population: Pitfalls and prospects. PLoS ONE, 2017, 12, e0181245.	1.1	69

#	Article	IF	CITATIONS
37	National Valuation of Monarch Butterflies Indicates an Untapped Potential for Incentiveâ€Based Conservation. Conservation Letters, 2014, 7, 253-262.	2.8	67
38	Population-level impact of white-nose syndrome on the endangered Indiana bat. Journal of Mammalogy, 2012, 93, 1086-1098.	0.6	66
39	Density, distribution, and genetic structure of grizzly bears in the Cabinet‥aak Ecosystem. Journal of Wildlife Management, 2016, 80, 314-331.	0.7	66
40	Predicting Regional Abundance of Rare Grassland Birds with a Hierarchical Spatial Count Model. Condor, 2006, 108, 25-46.	0.7	65
41	Predicting Regional Abundance of Rare Grassland Birds with a Hierarchical Spatial Count Model. Condor, 2006, 108, 25.	0.7	63
42	Exposure and Effects of Perfluoroalkyl Substances in Tree Swallows Nesting in Minnesota and Wisconsin, USA. Archives of Environmental Contamination and Toxicology, 2014, 66, 120-138.	2.1	63
43	Local and crossâ€seasonal associations of climate and land use with abundance of monarch butterflies <i>Danaus plexippus</i> . Ecography, 2018, 41, 278-290.	2.1	63
44	The pace of past climate change vs. potential bird distributions and land use in the United States. Global Change Biology, 2016, 22, 1130-1144.	4.2	62
45	Scaling Local Species-habitat Relations to the Larger Landscape with a Hierarchical Spatial Count Model. Landscape Ecology, 2007, 22, 61-75.	1.9	60
46	Estimating population density and connectivity of American minkÂusing spatial capture–recapture. Ecological Applications, 2016, 26, 1125-1135.	1.8	60
47	oSCR: a spatial capture–recapture R package for inference about spatial ecological processes. Ecography, 2019, 42, 1459-1469.	2.1	57
48	A Review of the Population Estimation Approach of the North American Landbird Conservation Plan. Auk, 2006, 123, 892-904.	0.7	54
49	Ecosystem Services from Transborder Migratory Species: Implications for Conservation Governance. Annual Review of Environment and Resources, 2017, 42, 509-539.	5.6	51
50	Comparison of statistical and theoretical habitat models for conservation planning: the benefit of ensemble prediction. , 2011, 21, 2269-2282.		50
51	Multi-scale responses of vegetation to removal of horse grazing from Great Basin (USA) mountain ranges. Plant Ecology, 2008, 196, 163-184.	0.7	49
52	Spatial captureâ€recapture models for searchâ€encounter data. Methods in Ecology and Evolution, 2011, 2, 602-611.	2.2	48
53	Modeling spatial variation in avian survival and residency probabilities. Ecology, 2010, 91, 1885-1891.	1.5	47
54	Full annual cycle climate change vulnerability assessment for migratory birds. Ecosphere, 2017, 8, e01565.	1.0	46

#	Article	IF	CITATIONS
55	A REVIEW OF THE POPULATION ESTIMATION APPROACH OF THE NORTH AMERICAN LANDBIRD CONSERVATION PLAN. Auk, 2006, 123, 892.	0.7	43
56	A modeling framework for integrated harvest and habitat management of North American waterfowl: Case-study of northern pintail metapopulation dynamics. Ecological Modelling, 2012, 225, 146-158.	1.2	42
57	A generalizable energeticsâ€based model of avian migration to facilitate continentalâ€scale waterbird conservation. Ecological Applications, 2016, 26, 1136-1153.	1.8	42
58	Quantifying ecosystem service flows at multiple scales across the range of a long-distance migratory species. Ecosystem Services, 2018, 31, 255-264.	2.3	42
59	Landscape Attributes and Nest-Site Selection in Wild Turkeys. Auk, 1999, 116, 912-923.	0.7	41
60	A cautionary tale regarding use of the National Land Cover Dataset 1992. Wildlife Society Bulletin, 2004, 32, 970-978.	1.6	40
61	Density estimates of monarch butterflies overwintering in central Mexico. PeerJ, 2017, 5, e3221.	0.9	40
62	Influence of land use and climate on wetland breeding birds in the Prairie Pothole region of Canada. Canadian Journal of Zoology, 2007, 85, 421-436.	0.4	36
63	Consequences of ignoring group association in spatial capture–recapture analysis. Wildlife Biology, 2020, 2020, .	0.6	35
64	Potential breeding distributions of U.S. birds predicted with both shortâ€ŧerm variability and longâ€ŧerm average climate data. Ecological Applications, 2016, 26, 2720-2731.	1.8	34
65	Using the North American Breeding Bird Survey to assess broad-scale response of the continent's most imperiled avian community, grassland birds, to weather variability. Condor, 2016, 118, 502-512.	0.7	34
66	Is the Timing, Pace, and Success of the Monarch Migration Associated With Sun Angle?. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	34
67	Modelâ€based estimators of density and connectivity to inform conservation of spatially structured populations. Ecosphere, 2017, 8, e01623.	1.0	34
68	Explaining Local-Scale Species Distributions: Relative Contributions of Spatial Autocorrelation and Landscape Heterogeneity for an Avian Assemblage. PLoS ONE, 2013, 8, e55097.	1.1	33
69	Ecosystem service flows from a migratory species: Spatial subsidies of the northern pintail. Ambio, 2019, 48, 61-73.	2.8	32
70	The importance of range edges for an irruptive species during extreme weather events. Landscape Ecology, 2015, 30, 1095-1110.	1.9	30
71	Sensitivity analysis of North American bird population estimates. Ecological Modelling, 2010, 221, 173-177.	1.2	29
72	Operationalizing the telecoupling framework for migratory species using the spatial subsidies approach to examine ecosystem services provided by Mexican free-tailed bats. Ecology and Society, 2017, 22, .	1.0	29

#	Article	IF	CITATIONS
73	Using partial aggregation in spatial capture recapture. Methods in Ecology and Evolution, 2018, 9, 1896-1907.	2.2	29
74	Home-range Size and Habitat Selection of Female Wild Turkeys (Meleagris gallopavo) in Arkansas. American Midland Naturalist, 2001, 145, 247-260.	0.2	28
75	Land use and climate influences on waterbirds in the Prairie Potholes. Journal of Biogeography, 2011, 38, 1694-1707.	1.4	27
76	Small sample bias in dynamic occupancy models. Journal of Wildlife Management, 2013, 77, 172-180.	0.7	27
77	Estimating migratory connectivity of birds when reâ€encounter probabilities are heterogeneous. Ecology and Evolution, 2014, 4, 1659-1670.	0.8	25
78	Effects of wind energy generation and white-nose syndrome on the viability of the Indiana bat. PeerJ, 2016, 4, e2830.	0.9	25
79	Modeling and Mapping Abundance of American Woodcock Across the Midwestern and Northeastern United States. Journal of Wildlife Management, 2007, 71, 376-382.	0.7	24
80	Locationâ€only and useâ€availability data: analysis methods converge. Journal of Animal Ecology, 2013, 82, 1120-1124.	1.3	24
81	Multi-country Willingness to Pay for Transborder Migratory Species Conservation: A Case Study of Northern Pintails. Ecological Economics, 2019, 157, 321-331.	2.9	24
82	Multiscale Habitat Selection by Ruffed Grouse at Low Population Densities. Condor, 2009, 111, 294-304.	0.7	23
83	The Integrated Monarch Monitoring Program: From Design to Implementation. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	23
84	Reproduction in a Declining Population of Wild Turkeys in Arkansas. Journal of Wildlife Management, 1999, 63, 1281.	0.7	22
85	USING THE NORTH AMERICAN BREEDING BIRD SURVEY AS A TOOL FOR CONSERVATION: A CRITIQUE OF BART ET AL. (2004). Journal of Wildlife Management, 2005, 69, 1321-1326.	0.7	20
86	SPACE-TIME MODELS FOR A PANZOOTIC IN BATS, WITH A FOCUS ON THE ENDANGERED INDIANA BAT. Journal of Wildlife Diseases, 2012, 48, 876-887.	0.3	20
87	Slow and steady wins the race? Future climate and land use change leaves the imperiled Blanding's turtle (Emydoidea blandingii) behind. Biological Conservation, 2018, 222, 75-85.	1.9	20
88	A general modeling framework for describing spatially structured population dynamics. Ecology and Evolution, 2018, 8, 493-508.	0.8	19
89	Willingness to Pay for Conservation of Transborder Migratory Species: A Case Study of the Mexican Free-Tailed Bat in the United States and Mexico. Environmental Management, 2018, 62, 229-240.	1.2	18
90	Reserve design to optimize functional connectivity and animal density. Conservation Biology, 2019, 33, 1023-1034.	2.4	18

#	Article	IF	CITATIONS
91	Breeding bird territory placement in riparian wet meadows in relation to invasive reed canary grass, Phalaris arundinacea. Wetlands, 2007, 27, 644-655.	0.7	17
92	Decline of the Shortjaw Cisco in Lake Superior: The Role of Overfishing and Risk of Extinction. Transactions of the American Fisheries Society, 2010, 139, 735-748.	0.6	17
93	Estimating the short-term recovery potential of little brown bats in the eastern United States in the face of White-nose syndrome. Ecological Modelling, 2015, 314, 111-117.	1.2	17
94	Optimizing conservation strategies for Mexican free-tailed bats: a population viability and ecosystem services approach. Biodiversity and Conservation, 2015, 24, 63-82.	1.2	17
95	Future frequencies of extreme weather events in the National Wildlife Refuges of the conterminous U.S Biological Conservation, 2016, 201, 327-335.	1.9	17
96	A management-oriented framework for selecting metrics used to assess habitat- and path-specific quality in spatially structured populations. Ecological Indicators, 2016, 69, 792-802.	2.6	17
97	Recreation economics to inform migratory species conservation: Case study of the northern pintail. Journal of Environmental Management, 2018, 206, 971-979.	3.8	17
98	Demographic and potential biological removal models identify raptor species sensitive to current and future wind energy. Ecosphere, 2021, 12, e03531.	1.0	17
99	Understanding the value of imperfect science from national estimates of bird mortality from window collisions. Condor, 2014, 116, 3-7.	0.7	16
100	Estimating the perâ€capita contribution of habitats and pathways in a migratory network: a modelling approach. Ecography, 2018, 41, 815-824.	2.1	16
101	Topâ€down effects of repatriating bald eagles hinder jointly recovering competitors. Journal of Animal Ecology, 2019, 88, 1054-1065.	1.3	16
102	NABat: A top-down, bottom-up solution to collaborative continental-scale monitoring. Ambio, 2021, 50, 901-913.	2.8	16
103	Mercury and other element exposure in tree swallows nesting at low pH and neutral pH lakes in northern Wisconsin USA. Environmental Pollution, 2012, 163, 68-76.	3.7	15
104	Prioritizing bird conservation actions in the Prairie Hardwood transition of the Midwestern United States. Biological Conservation, 2014, 176, 212-223.	1.9	15
105	Assessing local population vulnerability with branching process models: an application to wind energy development. Ecosphere, 2015, 6, 1-14.	1.0	15
106	Change in agricultural land use constrains adaptation of national wildlife refuges to climate change. Environmental Conservation, 2015, 42, 12-19.	0.7	15
107	Lessons learned from comparing spatially explicit models and the Partners in Flight approach to estimate population sizes of boreal birds in Alberta, Canada. Condor, 2020, 122, .	0.7	15
108	Importance of scale, land cover, and weather on the abundance of bird species in a managed forest. Forest Ecology and Management, 2017, 405, 295-308.	1.4	14

7

#	Article	IF	CITATIONS
109	Balancing sampling intensity against spatial coverage for a community science monitoring programme. Journal of Applied Ecology, 2019, 56, 2252-2263.	1.9	14
110	Challenges for leveraging citizen science to support statistically robust monitoring programs. Biological Conservation, 2020, 242, 108411.	1.9	13
111	Spatial modeling of survival and residency and application to the Monitoring Avian Productivity and Survivorship program. Journal of Ornithology, 2012, 152, 469-476.	0.5	12
112	Effects of Cave Gating On Population Trends at Individual Hibernacula of the Indiana Bat (<i>Myotis) Tj ETQq0 (</i>	0 0 rgBT /C	Overlock 10 Tf
113	Relating mesocarnivore relative abundance to anthropogenic landâ€use with a hierarchical spatial count model. Ecography, 2016, 39, 524-532.	2.1	12
114	Defining and classifying migratory habitats as sources and sinks: The migratory pathway approach. Journal of Applied Ecology, 2018, 55, 108-117.	1.9	12
115	Linking landscape-scale conservation to regional and continental outcomes for a migratory species. Scientific Reports, 2020, 10, 4968.	1.6	12
116	Bridging the research-implementation gap in avian conservation with translational ecology. Condor, 2021, 123, .	0.7	12
117	Large-scale climate variation modifies the winter grouping behavior of endangered Indiana bats. Journal of Mammalogy, 2014, 95, 117-127.	0.6	11
118	Assessing the sensitivity of avian species abundance to land cover and climate. Ecosphere, 2016, 7, e01359.	1.0	11
119	Flexible risk metrics for identifying and monitoring conservation-priority species. Ecological Indicators, 2016, 61, 683-692.	2.6	11
120	Developing population models with data from marked individuals. Biological Conservation, 2016, 197, 190-199.	1.9	11
121	Quantitative tools for implementing the new definition of significant portion of the range in the U.S. Endangered Species Act. Conservation Biology, 2018, 32, 35-49.	2.4	11
122	Relationship of Obligate Grassland Birds to Landscape Structure in Wisconsin. Journal of Wildlife Management, 2008, 72, 463-467.	0.7	10
123	Replacement Cost Valuation of Northern Pintail (<i>Anas acuta</i>) Subsistence Harvest in Arctic and Sub-Arctic North America. Human Dimensions of Wildlife, 2014, 19, 347-354.	1.0	10
124	Past and predicted future effects of housing growth on open space conservation opportunity areas and habitat connectivity around National Wildlife Refuges. Landscape Ecology, 2016, 31, 2175-2186.	1.9	10
125	Managing individual nests promotes population recovery of a top predator. Journal of Applied Ecology, 2018, 55, 1418-1429.	1.9	10
126	Estimating uncertainty of North American landbird population sizes. Avian Conservation and Ecology, 2019, 14, .	0.3	10

8

#	Article	IF	CITATIONS
127	ACCURACY ASSESSMENT OF PREDICTIVE MODELS OF GRASSLAND BIRD ABUNDANCES IN THE PRAIRIE HARDWOOD TRANSITION BIRD CONSERVATION REGION. Condor, 2008, 110, 747-755.	0.7	9
128	Estimating the spatial distribution of wintering little brown bat populations in the eastern United States. Ecology and Evolution, 2014, 4, 3746-3754.	0.8	9
129	Land use and climate affect Black Tern, Northern Harrier, and Marsh Wren abundance in the Prairie Pothole Region of the United States. Condor, 2014, 116, 226-241.	0.7	9
130	Why Not Consider the Commercialization of Deer Harvests?. BioScience, 2006, 56, 957.	2.2	8
131	Factors Associated with Succession of Abandoned Agricultural Lands along the Lower Missouri River, U.S.A Restoration Ecology, 2009, 17, 290-296.	1.4	8
132	Modeling and Mapping Golden-winged Warbler Abundance to Improve Regional Conservation Strategies. Avian Conservation and Ecology, 2010, 5, .	0.3	8
133	Evidence for a Growing Population of Eastern Migratory Monarch Butterflies Is Currently Insufficient. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	8
134	Power to Detect Trend in Short-Term Time Series of Bird Abundance. Condor, 2007, 109, 943-948.	0.7	7
135	Application of Models to Conservation Planning for Terrestrial Birds in North America. , 2009, , 593-624.		7
136	BatTool: an R package with GUI for assessing the effect of White-nose syndrome and other take events on Myotis spp. of bats. Source Code for Biology and Medicine, 2014, 9, 9.	1.7	7
137	A Stage-Structured, Spatially Explicit Migration Model for Myotis Bats: Mortality location affects system dynamics. Letters in Biomathematics, 2014, 1, 157-172.	0.3	7
138	A Method to Assess the Population-Level Consequences of Wind Energy Facilities on Bird and Bat Species. , 2017, , 65-76.		7
139	Consequences of ignoring spatial variation in population trend when conducting a power analysis. Ecography, 2019, 42, 836-844.	2.1	7
140	Effects at the Landscape Scale May Constrain Habitat Relations at Finer Scales. Avian Conservation and Ecology, 2007, 2, .	0.3	6
141	Evaluating the ability of regional models to predict local avian abundance. Journal of Wildlife Management, 2012, 76, 1177-1187.	0.7	6
142	Spatially explicit modeling of blackbird abundance in the Prairie Pothole Region. Journal of Wildlife Management, 2015, 79, 1022-1033.	0.7	6
143	Factors affecting nest survival of Henslow's Sparrows (<i>Ammodramus henslowii</i>) in southern Indiana. Wilson Journal of Ornithology, 2016, 128, 108-119.	0.1	6
144	Do economic values and expenditures for viewing waterfowl in the U.S. differ among species?. Human Dimensions of Wildlife, 2018, 23, 587-596.	1.0	6

#	Article	IF	CITATIONS
145	Sources and dynamics of international funding for waterfowl conservation in the Prairie Pothole Region of North America. Wildlife Research, 2020, 47, 279.	0.7	6
146	Effects of weather variation on waterfowl migration: Lessons from a continentalâ€scale generalizable avian movement and energetics model. Ecology and Evolution, 2022, 12, e8617.	0.8	6
147	POWER TO DETECT TREND IN SHORT-TERM TIME SERIES OF BIRD ABUNDANCE. Condor, 2007, 109, 943.	0.7	5
148	Modeling Wetland Blackbird Populations as a Function of Waterfowl Abundance in the Prairie Pothole Region of the United States and Canada. Environmental Bioindicators, 2008, 3, 124-135.	0.4	5
149	Concepts: Assessing Tiger Population Dynamics Using Capture–Recapture Sampling. , 2017, , 163-189.		5
150	Temperature-influenced energetics model for migrating waterfowl. Ecological Modelling, 2018, 378, 46-58.	1.2	5
151	Recovery planning in a dynamic system: integrating uncertainty into a decision support tool for an endangered songbird. Ecology and Society, 2019, 24, .	1.0	5
152	Quantifying the Contribution of Habitats and Pathways to a Spatially Structured Population Facing Environmental Change. American Naturalist, 2020, 196, 157-168.	1.0	5
153	Multiâ€species, multiâ€country analysis reveals North Americans are willing to pay for transborder migratory species conservation. People and Nature, 2022, 4, 549-562.	1.7	5
154	Color Blindness and Visualizing Georeferenced Data in Mapped Products: We Can Do More. Auk, 2010, 127, 460-462.	0.7	4
155	Projected Risk of Population Declines for Native Fish Species in the Upper Mississippi River. River River Research and Applications, 2015, 31, 135-142.	0.7	4
156	Chromosomal damage and EROD induction in tree swallows (Tachycineta bicolor) along the Upper Mississippi River, Minnesota, USA. Ecotoxicology, 2015, 24, 1028-1039.	1.1	4
157	Quantifying the relative contribution of an ecological reserve to conservation objectives. Global Ecology and Conservation, 2017, 9, 142-147.	1.0	4
158	A guide to calculating habitatâ€quality metrics to inform conservation of highly mobile species. Natural Resource Modelling, 2018, 31, .	0.8	4
159	Modeling the Relationship between Water Level, Wild Rice Abundance, and Waterfowl Abundance at a Central North American Wetland. Wetlands, 2019, 39, 149-160.	0.7	4
160	Modeling spatiotemporal abundance and movement dynamics using an integrated spatial capture–recapture movement model. Ecology, 2022, 103, .	1.5	4
161	The QWERTY Effect Does Not Extend to Birth Names. Names, 2013, 61, 47-52.	0.1	3
162	Quantifying source and sink habitats and pathways in spatially structured populations: A generalized modelling approach. Ecological Modelling, 2019, 407, 108715.	1.2	3

#	Article	IF	CITATIONS
163	The Role of Assumptions in Predictions of Habitat Availability and Quality. , 2011, , 71-90.		3
164	A Stage-Structured, Spatially Explicit Migration Model for Myotis Bats: Mortality Location Affects System Dynamics. Letters in Biomathematics, 2014, 1, .	0.3	3
165	Accounting for Surveyor Effort in Large-Scale Monitoring Programs. Journal of Fish and Wildlife Management, 2018, 9, 459-466.	0.4	3
166	<i>LINK:</i> A Land Conservation Decision Support Tool. Bulletin of the Ecological Society of America, 2006, 87, 229-236.	0.2	2
167	Editorial: North American Monarch Butterfly Ecology and Conservation. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	2
168	Landscape- and local-level variables affect monarchs in Midwest grasslands. Landscape Ecology, 2022, 37, 93-108.	1.9	2
169	Avian assemblages in the lower Missouri River floodplain. Wetlands, 2009, 29, 552-562.	0.7	1
170	TrendPowerTool : A lookup tool for estimating the statistical power of a monitoring program to detect population trends. Conservation Science and Practice, 2021, 3, e445.	0.9	1