Dedong Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3537019/publications.pdf

Version: 2024-02-01

759233 794594 41 388 12 19 h-index citations g-index papers 41 41 41 453 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	High-Performance Transparent AZO TFTs Fabricated on Glass Substrate. IEEE Transactions on Electron Devices, 2013, 60, 2432-2435.	3.0	52
2	Oxygen Interstitial Creation in a-IGZO Thin-Film Transistors Under Positive Gate-Bias Stress. IEEE Electron Device Letters, 2017, 38, 1252-1255.	3.9	41
3	High-Performance ZnO Thin-Film Transistors Prepared by Atomic Layer Deposition. IEEE Transactions on Electron Devices, 2019, 66, 2965-2970.	3.0	25
4	Enhanced electrical properties of dual-layer channel ZnO thin film transistors prepared by atomic layer deposition. Applied Surface Science, 2018, 439, 632-637.	6.1	24
5	Fully transparent high performance thin film transistors with bilayer ITO/Al-Sn-Zn-O channel structures fabricated on glass substrate. Scientific Reports, 2017, 7, 1497.	3.3	20
6	Enhanced Performance of Atomic Layer Deposited Thin-Film Transistors With High-Quality ZnO/Al ₂ O ₃ Interface. IEEE Transactions on Electron Devices, 2020, 67, 518-523.	3.0	20
7	The Effects of Post Annealing Process on the Electrical Performance and Stability of Al-Zn-O Thin-Film Transistors. IEEE Electron Device Letters, 2020, 41, 569-572.	3.9	16
8	Titanium doped zinc oxide thin film transistors fabricated by cosputtering technique. Applied Surface Science, 2018, 459, 345-348.	6.1	15
9	Effects of Channel Thickness on Electrical Performance and Stability of High-Performance InSnO Thin-Film Transistors. Membranes, 2021, 11, 929.	3.0	15
10	Oxygen Adsorption Effect of Amorphous InGaZnO Thin-Film Transistors. IEEE Electron Device Letters, 2017, 38, 465-468.	3.9	14
11	Bi-layer Channel AZO/ZnO Thin Film Transistors Fabricated by Atomic Layer Deposition Technique. Nanoscale Research Letters, 2017, 12, 223.	5.7	13
12	High Performance Ti-Doped ZnO TFTs With AZO/TZO Heterojunction S/D Contacts. Journal of Display Technology, 2015, 11, 412-416.	1.2	12
13	High-Performance Ti-Doped Zinc Oxide TFTs With Double-Layer Gate Dielectric Fabricated at Low Temperature. IEEE Electron Device Letters, 2017, 38, 207-209.	3.9	12
14	High-Performance Flexible Tin-Zinc-Oxide Thin-Film Transistors Fabricated on Plastic Substrates. IEEE Transactions on Electron Devices, 2016, , 1-4.	3.0	11
15	Investigation on Transparent, Conductive ZnO:Al Films Deposited by Atomic Layer Deposition Process. Nanomaterials, 2022, 12, 172.	4.1	11
16	High-Performance ZnO Thin-Film Transistors on Flexible PET Substrates With a Maximum Process Temperature of 100 °C. IEEE Journal of the Electron Devices Society, 2021, 9, 10-13.	2.1	10
17	Effects of Channel Layer Thickness on Characteristics of Flexible Nickel-Doped Zinc Oxide Thin-Film Transistors. IEEE Transactions on Electron Devices, 2017, 64, 1997-2000.	3.0	9
18	Improving Performance of Tin-Doped-Zinc-Oxide Thin-Film Transistors by Optimizing Channel Structure. Scientific Reports, 2019, 9, 17175.	3.3	9

#	Article	IF	CITATIONS
19	High-performance Al-Zn-O Thin-Film Transistors Sputtering at Different Power. IEEE Transactions on Electron Devices, 2019, 66, 4774-4777.	3.0	8
20	AZO Thin Film Transistor Performance Enhancement by Capping an Aluminum Layer. IEEE Transactions on Electron Devices, 2017, 64, 2228-2232.	3.0	6
21	Investigation of c-axis-aligned crystalline gadolinium doped aluminum-zinc-oxide films sputtered at room-temperature. Applied Physics Letters, 2018, 112, .	3.3	6
22	Highâ€performance dualâ€layer channel ITO/TZO TFTs fabricated on glass substrate. Electronics Letters, 2014, 50, 633-635.	1.0	4
23	Transparent gallium doped zinc oxide thin-film transistors fabricated on glass substrate. Thin Solid Films, 2015, 594, 266-269.	1.8	4
24	High mobility transparent flexible nickelâ€doped zinc oxide thinâ€film transistors with small subthreshold swing. Electronics Letters, 2015, 51, 1595-1596.	1.0	4
25	Highâ€performance fully transparent Al–Sn–Zn–O thinâ€film transistors using doubleâ€channel structures. Electronics Letters, 2016, 52, 1069-1070.	1.0	4
26	Snâ€doped ZnO thinâ€film transistors with AZO, TZO and Al heterojunction source/drain contacts. Electronics Letters, 2016, 52, 302-304.	1.0	4
27	Highâ€performance full transparent tinâ€doped zinc oxide thinâ€film transistors fabricated on glass at low temperatures. Electronics Letters, 2014, 50, 1463-1465.	1.0	3
28	Effects of substrate temperature on performance of calciumâ€doped zinc oxide TFTs. Electronics Letters, 2015, 51, 1286-1288.	1.0	3
29	Fully transparent flexible dualâ€layer channel Gaâ€doped ZnO thinâ€film transistors on plastic substrates. Electronics Letters, 2015, 51, 1069-1071.	1.0	3
30	Back-End-of-Line Compatible InSnO/ZnO Heterojunction Thin-Film Transistors With High Mobility and Excellent Stability. IEEE Electron Device Letters, 2022, 43, 1251-1254.	3.9	3
31	Structural Engineering Effects on Hump Characteristics of ZnO/InSnO Heterojunction Thin-Film Transistors. Nanomaterials, 2022, 12, 1167.	4.1	2
32	Performance enhancement of fully transparent tinâ€doped zinc oxide thinâ€film transistors fabricated by sputtering at low temperature. Electronics Letters, 2015, 51, 272-274.	1.0	1
33	Pâ€1.13: Influence of the Source/Drain Material on Oxide Semiconductor Thin Film Transistors. Digest of Technical Papers SID International Symposium, 2018, 49, 557-560.	0.3	1
34	Performance Enhancement of TiZO Thin Film Transistors by Introducing a Thin ITO Interlayer. IEEE Journal of the Electron Devices Society, 2019, 7, 1302-1305.	2.1	1
35	High-performance ZnO Thin-Film Transistors Prepared by Atomic Layer Deposition at Low Temperature. , 2021, , .		1
36	36.3: Flexible ZnO Thinâ€Film Transistors Fabricated on PEN Substrate by Atomic Layer Deposition at Low Temperature. Digest of Technical Papers SID International Symposium, 2021, 52, 472-476.	0.3	1

#	Article	IF	CITATIONS
37	Paper No P20: Effects of the Channel Thickness on Characteristics of Ga-Doped Zinc Oxide Thin-Film Transistors Fabricated on Glass. Digest of Technical Papers SID International Symposium, 2015, 46, 87-87.	0.3	0
38	Enhancement Of Positive Bias Stress Stability For IGZO TFTs By A CAAC Gd-AZO Bulk Layer., 2018,,.		O
39	Atomic Layer Deposition Deposited Al-Doped ZnO Films for Transistor Application., 2021,,.		0
40	8.2: High Performance Oxide Thin Film Transistors Fabricated by Atomic Layer Deposition Process. Digest of Technical Papers SID International Symposium, 2021, 52, 141-141.	0.3	0
41	Pâ€1.7: Atomicâ€Layerâ€Deposition Deposited Superlatticeâ€Structure Alâ€Znâ€O Films for Thin Film Transistors Application. Digest of Technical Papers SID International Symposium, 2021, 52, 696-698.	0.3	0