
Man Nin Chan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3536998/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical transformation of <i>l̂±</i> -pinene-derived organosulfate via heterogeneous OH oxidation: implications for sources and environmental fates of atmospheric organosulfates. Atmospheric Chemistry and Physics, 2022, 22, 5685-5700.	4.9	4
2	Effects of liquid–liquid phase separation and relative humidity on the heterogeneous OH oxidation of inorganic–organic aerosols: insights from methylglutaric acid and ammonium sulfate particles. Atmospheric Chemistry and Physics, 2021, 21, 2053-2066.	4.9	16
3	Inorganic Sulfur Species Formed upon Heterogeneous OH Oxidation of Organosulfates: A Case Study of Methyl Sulfate. ACS Earth and Space Chemistry, 2020, 4, 2041-2049.	2.7	9
4	Heterogeneous Hydroxyl Radical Oxidation of Isoprene-Epoxydiol-Derived Methyltetrol Sulfates: Plausible Formation Mechanisms of Previously Unexplained Organosulfates in Ambient Fine Aerosols. Environmental Science and Technology Letters, 2020, 7, 460-468.	8.7	43
5	Effect of inorganic-to-organic mass ratio on the heterogeneous OH reaction rates of erythritol: implications for atmospheric chemical stability of 2-methyltetrols. Atmospheric Chemistry and Physics, 2020, 20, 3879-3893.	4.9	10
6	Organosulfates in Ambient Aerosol: State of Knowledge and Future Research Directions on Formation, Abundance, Fate, and Importance. Environmental Science & Technology, 2020, 54, 3767-3782.	10.0	109
7	Effects of inorganic salts on the heterogeneous OH oxidation of organic compounds: insights from methylglutaric acid–ammonium sulfate. Atmospheric Chemistry and Physics, 2019, 19, 9581-9593.	4.9	9
8	Intrapulmonary Cellular-Level Distribution of Inhaled Nanoparticles with Defined Functional Groups and Its Correlations with Protein Corona and Inflammatory Response. ACS Nano, 2019, 13, 14048-14069.	14.6	42
9	Effect of Ozone Concentration and Relative Humidity on the Heterogeneous Oxidation of Linoleic Acid Particles by Ozone: An Insight into the Interchangeability of Ozone Concentration and Time. ACS Earth and Space Chemistry, 2019, 3, 779-788.	2.7	19
10	Heterogeneous OH oxidation of isoprene-epoxydiol-derived organosulfates: kinetics, chemistry and formation of inorganic sulfate. Atmospheric Chemistry and Physics, 2019, 19, 2433-2440.	4.9	26
11	Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate. Atmospheric Chemistry and Physics, 2018, 18, 2809-2820.	4.9	42
12	Evolution in the Reactivity of Citric Acid toward Heterogeneous Oxidation by Gas-Phase OH Radicals. ACS Earth and Space Chemistry, 2018, 2, 1323-1329.	2.7	15
13	Chemical Transformation of Methanesulfonic Acid and Sodium Methanesulfonate through Heterogeneous OH Oxidation. ACS Earth and Space Chemistry, 2018, 2, 895-903.	2.7	18
14	Effects of Relative Humidity and Particle Phase Water on the Heterogeneous OH Oxidation of 2-Methylglutaric Acid Aqueous Droplets. Journal of Physical Chemistry A, 2017, 121, 1666-1674.	2.5	30
15	Compositional evolution of particle-phase reaction products and water in the heterogeneous OH oxidation of model aqueous organic aerosols. Atmospheric Chemistry and Physics, 2017, 17, 14415-14431.	4.9	17
16	Importance of Unimolecular HO ₂ Elimination in the Heterogeneous OH Reaction of Highly Oxygenated Tartaric Acid Aerosol. Journal of Physical Chemistry A, 2016, 120, 5887-5896.	2.5	17
17	The role of alkoxy radicals in the heterogeneous reaction of two structural isomers of dimethylsuccinic acid. Physical Chemistry Chemical Physics, 2015, 17, 25309-25321.	2.8	19
18	Role of Water and Phase in the Heterogeneous Oxidation of Solid and Aqueous Succinic Acid Aerosol by Hydroxyl Radicals. Journal of Physical Chemistry C, 2014, 118, 28978-28992.	3.1	70

MAN NIN CHAN

#	Article	IF	CITATIONS
19	Oligomeric products and formation mechanisms from acid-catalyzed reactions of methyl vinyl ketone on acidic sulfate particles. Journal of Atmospheric Chemistry, 2013, 70, 1-18.	3.2	19
20	Real time in situ chemical characterization of sub-micron organic aerosols using Direct Analysis in Real Time mass spectrometry (DART-MS): the effect of aerosol size and volatility. Analyst, The, 2013, 138, 3749.	3.5	49
21	Measurements of Isoprene-Derived Organosulfates in Ambient Aerosols by Aerosol Time-of-Flight Mass Spectrometry - Part 1: Single Particle Atmospheric Observations in Atlanta. Environmental Science & Technology, 2011, 45, 5105-5111.	10.0	121
22	Measurements of Isoprene-Derived Organosulfates in Ambient Aerosols by Aerosol Time-of-Flight Mass Spectrometry—Part 2: Temporal Variability and Formation Mechanisms. Environmental Science & Technology, 2011, 45, 8648-8655.	10.0	79
23	Characterization and Quantification of Isoprene-Derived Epoxydiols in Ambient Aerosol in the Southeastern United States. Environmental Science & Technology, 2010, 44, 4590-4596.	10.0	165
24	Measurements of the Hygroscopic and Deliquescence Properties of Organic Compounds of Different Solubilities in Water and Their Relationship with Cloud Condensation Nuclei Activities. Environmental Science & Technology, 2008, 42, 3602-3608.	10.0	83
25	FTIR Characterization of Polymorphic Transformation of Ammonium Nitrate. Aerosol Science and Technology, 2007, 41, 581-588.	3.1	91
26	Responses of Ammonium Sulfate Particles Coated with Glutaric Acid to Cyclic Changes in Relative Humidity: Hygroscopicity and Raman Characterization. Environmental Science & Technology, 2006, 40, 6983-6989.	10.0	52
27	Cloud condensation nuclei activation of limited solubility organic aerosol. Atmospheric Environment, 2006, 40, 605-617.	4.1	123
28	Hygroscopicity of Water-Soluble Organic Compounds in Atmospheric Aerosols:  Amino Acids and Biomass Burning Derived Organic Species. Environmental Science & Technology, 2005, 39, 1555-1562.	10.0	182
29	Hygroscopic Properties of Two Model Humic-like Substances and Their Mixtures with Inorganics of Atmospheric Importance. Environmental Science & amp; Technology, 2003, 37, 5109-5115.	10.0	130
30	The Hygroscopic Properties of Dicarboxylic and Multifunctional Acids:Â Measurements and UNIFAC Predictions. Environmental Science & Technology, 2001, 35, 4495-4501.	10.0	475
31	Chemical Transformation of a Long-Chain Alkyl Organosulfate via Heterogeneous OH Oxidation: A Case Study of Sodium Dodecyl Sulfate. Environmental Science Atmospheres, 0, , .	2.4	Ο