
Michael Teske

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3536881/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Accelerated Endothelialization of Nanofibrous Scaffolds for Biomimetic Cardiovascular Implants. Materials, 2022, 15, 2014.	1.3	9
2	A hydrogel based quasi-stationary test system for in vitro dexamethasone release studies for middle ear drug delivery systems. Current Directions in Biomedical Engineering, 2021, 7, 692-695.	0.2	0
3	Physico chemical and phase separation characterization of high molecular PLLA blended with low molecular PCL obtained from solvent cast processes. Materials Research Express, 2020, 7, 095302.	0.8	4
4	Immobilizing hydrolytic active Papain on biodegradable PLLA for biofilm inhibition in cardiovascular applications. Current Directions in Biomedical Engineering, 2020, 6, 172-175.	0.2	3
5	Dexamethasone release from photopolymerised PEGDA700 for cochlea drug delivery. Current Directions in Biomedical Engineering, 2020, 6, 82-84.	0.2	0
6	Controlled biodegradation of metallic biomaterials by plasma polymer coatings using hexamethyldisiloxane and allylamine monomers. Current Directions in Biomedical Engineering, 2019, 5, 315-317.	0.2	3
7	Systematic analysis about residual chloroform removal from PCL films. Current Directions in Biomedical Engineering, 2018, 4, 567-569.	0.2	4
8	Osteointegration of Porous Poly-ε-Caprolactone-Coated and Previtalised Magnesium Implants in Critically Sized Calvarial Bone Defects in the Mouse Model. Materials, 2018, 11, 6.	1.3	13
9	Comparison of Six Different Silicones In Vitro for Application as Glaucoma Drainage Device. Materials, 2018, 11, 341.	1.3	6
10	Influence of bulk incorporation of FDAc and PTX on polymer properties. Current Directions in Biomedical Engineering, 2017, 3, 691-694.	0.2	1
11	Surface functionalization of poly(ε-caprolactone) and poly(3-hydroxybutyrate) with VEGF. BioNanoMaterials, 2017, 18, .	1.4	1
12	In Vitro Evaluation of PCL and P(3HB) as Coating Materials for Selective Laser Melted Porous Titanium Implants. Materials, 2017, 10, 1344.	1.3	13
13	Systemic analysis about residual chloroform in PLLA films. Current Directions in Biomedical Engineering, 2016, 2, 49-52.	0.2	2
14	Poly-ε-caprolactone Coated and Functionalized Porous Titanium and Magnesium Implants for Enhancing Angiogenesis in Critically Sized Bone Defects. International Journal of Molecular Sciences, 2016, 17, 1.	1.8	1,160
15	Evaluation of Functionalized Porous Titanium Implants for Enhancing Angiogenesis in Vitro. Materials, 2016, 9, 304.	1.3	5
16	Comparison of Selective Laser Melted Titanium and Magnesium Implants Coated with PCL. International Journal of Molecular Sciences, 2015, 16, 13287-13301.	1.8	29
17	Surface Modification of Biodegradable Polymers towards Better Biocompatibility and Lower Thrombogenicity. PLoS ONE, 2015, 10, e0142075.	1.1	32
18	SLM Produced Porous Titanium Implant Improvements for Enhanced Vascularization and Osteoblast Seeding. International Journal of Molecular Sciences, 2015, 16, 7478-7492.	1.8	72

MICHAEL TESKE

#	Article	IF	CITATIONS
19	Chemical activation and changes in surface morphology of poly(ε-caprolactone) modulate VEGF responsiveness of human endothelial cells. Journal of Materials Science: Materials in Medicine, 2014, 25, 2003-2015.	1.7	7
20	Enhanced Hydrolytic Degradation of Heterografted Polyglycidols: Phosphonoethylated Monoester and Polycaprolactone Grafts. Biomacromolecules, 2013, 14, 3985-3996.	2.6	8
21	Development andIn VitroCharacterization of Hyaluronic Acid-Based Coatings for Implant-Associated Local Drug Delivery Systems. Journal of Chemistry, 2013, 2013, 1-11.	0.9	13
22	Surface functionalization of poly(ε aprolactone) improves its biocompatibility as scaffold material for bioartificial vessel prostheses. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 98B, 89-100.	1.6	45
23	Synthesis, characterization and in vitro degradation of 3D-microstructured poly(ε-caprolactone) resins. Polymer Chemistry, 2010, 1, 1215.	1.9	22