
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3536717/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Risk factors for microcystic macular oedema in glaucoma. British Journal of Ophthalmology, 2023, 107, 505-510.	3.9	5
2	Comparison of Ganglion Cell Layer and Ganglion Cell/Inner Plexiform Layer Measures for Detection of Early Glaucoma. Ophthalmology Glaucoma, 2023, 6, 58-67.	1.9	2
3	Ganglion Cell Complex: The Optimal Measure for Detection of Structural Progression in the Macula. American Journal of Ophthalmology, 2022, 237, 71-82.	3.3	6
4	Structural-Functional Glaucoma Progression Trajectory in 2-Dimensional Space. Journal of Glaucoma, 2022, 31, 250-260.	1.6	0
5	DNA and RNA oxidative damage in the retina is associated with ganglion cell mitochondria. Scientific Reports, 2022, 12, .	3.3	9
6	Multivariate Longitudinal Modeling of Macular Ganglion Cell Complex. Ophthalmology Science, 2022, 2, 100187.	2.5	7
7	Rate of visual field decay in glaucomatous eyes with acquired pits of the optic nerve. British Journal of Ophthalmology, 2021, 105, 381-386.	3.9	4
8	Adduction-Induced Strain on the Optic Nerve in Primary Open Angle Glaucoma at Normal Intraocular Pressure. Current Eye Research, 2021, 46, 568-578.	1.5	14
9	Strabismus After Ahmed Glaucoma Valve Implantation. American Journal of Ophthalmology, 2021, 222, 1-5.	3.3	4
10	Local Macular Thickness Relationships between 2 OCT Devices. Ophthalmology Glaucoma, 2021, 4, 209-215.	1.9	4
11	Estimating Ganglion Cell Complex Rates of Change With Bayesian Hierarchical Models. Translational Vision Science and Technology, 2021, 10, 15.	2.2	8
12	Loss of Rbfox1 Does Not Affect Survival of Retinal Ganglion Cells Injured by Optic Nerve Crush. Frontiers in Neuroscience, 2021, 15, 687690.	2.8	5
13	Prediction of Visual Field Progression from OCT Structural Measures in Moderate to Advanced Glaucoma. American Journal of Ophthalmology, 2021, 226, 172-181.	3.3	31
14	Differential Retinal Protein Expression in Primary and Secondary Retinal Ganglion Cell Degeneration Identified by Integrated SWATH and Target-Based Proteomics. International Journal of Molecular Sciences, 2021, 22, 8592.	4.1	5
15	Detection of Longitudinal Ganglion Cell/Inner Plexiform Layer Change: Comparison of Two Spectral-Domain Optical Coherence Tomography Devices. American Journal of Ophthalmology, 2021, 231, 1-10.	3.3	7
16	Demographic, Comorbid, and Clinical Variables Associated With Pointwise Visual Field Damage in Glaucoma: Data From the AGIS and CIGTS Clinical Trials. Translational Vision Science and Technology, 2021, 10, 28.	2.2	3
17	Combining Structural and Vascular Parameters to Discriminate Among Glaucoma Patients, Glaucoma Suspects, and Healthy Subjects. Translational Vision Science and Technology, 2021, 10, 20.	2.2	6
18	Optic Nerve Traction During Adduction in Open Angle Glaucoma with Normal versus Elevated Intraocular Pressure. Current Eye Research, 2020, 45, 199-210.	1.5	25

#	Article	IF	CITATIONS
19	Predictors of Long-Term Visual Field Fluctuation in Glaucoma Patients. Ophthalmology, 2020, 127, 739-747.	5.2	18
20	The effect of Rbfox2 modulation on retinal transcriptome and visual function. Scientific Reports, 2020, 10, 19683.	3.3	7
21	Comparison of Rates of Progression of Macular OCT Measures in Glaucoma. Translational Vision Science and Technology, 2020, 9, 50.	2.2	17
22	Efficacy of Combined Suprachoroidal Stent and Cataract Surgery in Patients With Glaucoma. Journal of Glaucoma, 2020, 29, 627-638.	1.6	3
23	Pointwise Methods to Measure Long-term Visual Field Progression in Glaucoma. JAMA Ophthalmology, 2020, 138, 536.	2.5	2
24	Long-Term Outcomes of Descemet Membrane Endothelial Keratoplasty in Eyes with Prior Glaucoma Surgery. American Journal of Ophthalmology, 2020, 218, 288-295.	3.3	16
25	Longitudinal Macular Structure–Function Relationships in Glaucoma. Ophthalmology, 2020, 127, 888-900.	5.2	47
26	Macular imaging with optical coherence tomography in glaucoma. Survey of Ophthalmology, 2020, 65, 597-638.	4.0	45
27	Peripapillary Scleral Bowing Increases with Age and Is Inversely Associated with Peripapillary Choroidal Thickness in Healthy Eyes. American Journal of Ophthalmology, 2020, 217, 91-103.	3.3	25
28	The Trajectory of Glaucoma Progression in 2-Dimensional Structural–Functional Space. Ophthalmology Glaucoma, 2020, 3, 466-474.	1.9	1
29	Outcomes of Glaucoma Drainage Device Surgery in Eyes with Treated Uveal Melanoma. Ocular Oncology and Pathology, 2019, 5, 20-27.	1.0	3
30	Prediction of Glaucoma Progression with Structural Parameters: Comparison of Optical Coherence Tomography and Clinical Disc Parameters. American Journal of Ophthalmology, 2019, 208, 19-29.	3.3	15
31	Quantification of Visual Field Variability in Claucoma: Implications for Visual Field Prediction and Modeling. Translational Vision Science and Technology, 2019, 8, 25.	2.2	13
32	Relationship of the Macular Ganglion Cell and Inner Plexiform Layers in Healthy and Glaucoma Eyes. Translational Vision Science and Technology, 2019, 8, 27.	2.2	8
33	Comparison of Methods to Detect and Measure Glaucomatous Visual Field Progression. Translational Vision Science and Technology, 2019, 8, 2.	2.2	41
34	Re: Saeedi etÂal: Agreement and predictors of discordance of 6 visual field progression algorithms (Ophthalmology. 2019;126:822–828). Ophthalmology, 2019, 126, e77-e78.	5.2	0
35	Cataract Surgery and Rate of Visual Field Progression in Primary Open-Angle Glaucoma. American Journal of Ophthalmology, 2019, 201, 19-30.	3.3	24
36	Risk Factors for Fast Visual Field Progression in Glaucoma. American Journal of Ophthalmology, 2019, 207, 268-278.	3.3	50

#	Article	IF	CITATIONS
37	Cataract Surgery and Rate of Visual Field Progression in Primary Open-Angle Glaucoma. American Journal of Ophthalmology, 2019, 204, 140-141.	3.3	0
38	Comparative lipid profiling dataset of the inflammation-induced optic nerve regeneration. Data in Brief, 2019, 24, 103950.	1.0	12
39	Longitudinal Macular Structure-Function Relationships in Glaucoma and Their Sources of Variability. American Journal of Ophthalmology, 2019, 207, 18-36.	3.3	18
40	OCT-Detected Optic Nerve Head Neural Canal Direction, Obliqueness, and Minimum Cross-Sectional Area in Healthy Eyes. American Journal of Ophthalmology, 2019, 208, 185-205.	3.3	23
41	Factors Influencing Optical Coherence Tomography Peripapillary Choroidal Thickness: A Multicenter Study. , 2019, 60, 795.		25
42	Comparison of Endothelial Keratoplasty Techniques in Patients With Prior Glaucoma Surgery: A Case-Matched Study. American Journal of Ophthalmology, 2019, 206, 94-101.	3.3	21
43	The effect of celastrol on the ocular hypertension-induced degeneration of retinal ganglion cells. Neuroscience Letters, 2018, 670, 89-93.	2.1	13
44	RNA-binding protein Rbpms is represented in human retinas by isoforms A and C and its transcriptional regulation involves Sp1-binding site. Molecular Genetics and Genomics, 2018, 293, 819-830.	2.1	9
45	Association of Dietary Fatty Acid Intake With Glaucoma in the United States. JAMA Ophthalmology, 2018, 136, 141.	2.5	27
46	Visual Field Assessment in Children. JAMA Ophthalmology, 2018, 136, 162.	2.5	2
47	NEW ULTRA–WIDE-FIELD ANGIOGRAPHIC GRADING SCHEME FOR RADIATION RETINOPATHY AFTER IODINE-125 BRACHYTHERAPY FOR UVEAL MELANOMA. Retina, 2018, 38, 2415-2421.	1.7	16
48	Trabeculectomy With Mitomycin-C: Outcomes and Risk Factors for Failure in Primary Angle-closure Glaucoma. Journal of Glaucoma, 2018, 27, 101-107.	1.6	14
49	Trabeculectomy Outcomes After Glaucoma Drainage Device Surgery. Journal of Glaucoma, 2018, 27, 133-139.	1.6	9
50	Long-term Outcome of Second Ahmed Valves in Adult Glaucoma. American Journal of Ophthalmology, 2018, 186, 96-103.	3.3	10
51	A Phenotype of Primary Open-angle Glaucoma With Systemic Vasospasm. Journal of Glaucoma, 2018, 27, 987-992.	1.6	6
52	Bruch's membrane opening-minimum rim width and visual field loss in glaucoma: a broken stick analysis. International Journal of Ophthalmology, 2018, 11, 828-834.	1.1	10
53	Intraocular pressure fluctuation: Is it important?. Journal of Ophthalmic and Vision Research, 2018, 13, 170.	1.0	78
54	A Method to Measure the Rate of Glaucomatous Visual Field Change. Translational Vision Science and Technology, 2018, 7, 14.	2.2	22

#	Article	IF	CITATIONS
55	Factors Influencing Central Lamina Cribrosa Depth: A Multicenter Study. , 2018, 59, 2357.		33
56	The Fovea-BMO Axis Angle and Macular Thickness Vertical Asymmetry Across The Temporal Raphe. Journal of Glaucoma, 2018, 27, 993-998.	1.6	8
57	Protruded retinal layers within the optic nerve head neuroretinal rim. Acta Ophthalmologica, 2018, 96, e493-e502.	1.1	2
58	Optic Nerve Regeneration After Crush Remodels the Injury Site: Molecular Insights From Imaging Mass Spectrometry. , 2018, 59, 212.		19
59	Downregulation of splicing regulator RBFOX1 compromises visual depth perception. PLoS ONE, 2018, 13, e0200417.	2.5	13
60	Observational Outcomes of Initial Trabeculectomy With Mitomycin C in Patients of African Descent vs Patients of European Descent. JAMA Ophthalmology, 2018, 136, 1106.	2.5	26
61	The relationship between central visual field sensitivity and macular ganglion cell/inner plexiform layer thickness in glaucoma. British Journal of Ophthalmology, 2017, 101, 1052-1058.	3.9	48
62	Risk Factors and Long-Term Outcomes in Patients with Low Intraocular Pressure after Trabeculectomy. Ophthalmology, 2017, 124, 1457-1465.	5.2	35
63	Association of Structural and Functional Measures With Contrast Sensitivity in Glaucoma. American Journal of Ophthalmology, 2017, 178, 129-139.	3.3	32
64	Surgical Management of Pediatric Glaucoma. Developments in Ophthalmology, 2017, 59, 165-178.	0.1	27
65	Expert Evaluation of Visual Field Decay in Glaucoma Correlates With the Fast Component of Visual Field Loss. Journal of Glaucoma, 2017, 26, 902-910.	1.6	2
66	Aqueous shunts for glaucoma. The Cochrane Library, 2017, 2017, CD004918.	2.8	37
67	Magnetic Resonance Imaging of Optic Nerve Traction During Adduction in Primary Open-Angle Glaucoma With Normal Intraocular Pressure. , 2017, 58, 4114.		52
68	Peripapillary Retinal Nerve Fiber Measurement with Spectral-Domain Optical Coherence Tomography in Age-Related Macular Degeneration. Vision (Switzerland), 2017, 1, 26.	1.2	2
69	Structure-Function Relationships in Perimetric Glaucoma: Comparison of Minimum-Rim Width and Retinal Nerve Fiber Layer Parameters. , 2017, 58, 4623.		16
70	Vertical Macular Asymmetry Measures Derived From SD-OCT for Detection of Early Glaucoma. , 2017, 58, 4310.		17
71	Optic Disc Image Subtraction as an Aid to Detect Glaucoma Progression. Translational Vision Science and Technology, 2017, 6, 14.	2.2	2
72	Enhancement of Visual Field Predictions with Pointwise Exponential Regression (PER) and Pointwise Linear Regression (PLR). Translational Vision Science and Technology, 2016, 5, 12.	2.2	8

#	Article	IF	CITATIONS
73	Aqueous Angiography with Fluorescein and Indocyanine Green in Bovine Eyes. Translational Vision Science and Technology, 2016, 5, 5.	2.2	37
74	Author Response: Comparison of Local Structure–Function Relationships and Dynamic Range in Glaucoma. , 2016, 57, 6406.		0
75	Subcellular Localization of a 2-Arachidonoyl Glycerol Signaling Cassette in Retinal Ganglion Cell Axonal Growth In Vitro. , 2016, 57, 6885.		2
76	The Relationship of the Clinical Disc Margin and Bruch's Membrane Opening in Normal and Glaucoma Subjects. , 2016, 57, 1468.		13
77	Macular SD-OCT Outcome Measures: Comparison of Local Structure-Function Relationships and Dynamic Range. , 2016, 57, 4815.		53
78	Local Variability of Macular Thickness Measurements With SD-OCT and Influencing Factors. Translational Vision Science and Technology, 2016, 5, 5.	2.2	30
79	Early Aqueous Suppressant Therapy on Hypertensive Phase Following Glaucoma Drainage Device Procedure. Journal of Glaucoma, 2016, 25, 248-257.	1.6	50
80	Evaluation of the "lS―Rule to Differentiate Glaucomatous Eyes From Normal. Journal of Glaucoma, 2016, 25, 27-32.	1.6	19
81	Heat shock proteins in the retina: Focus on HSP70 and alpha crystallins in ganglion cell survival. Progress in Retinal and Eye Research, 2016, 52, 22-46.	15.5	56
82	Course of Glaucomatous Visual Field Loss Across the Entire Perimetric Range. JAMA Ophthalmology, 2016, 134, 496.	2.5	31
83	Same-site Trabeculectomy Revision for Failed Trabeculectomy: Outcomes and Risk Factors for Failure. American Journal of Ophthalmology, 2016, 170, 110-118.	3.3	19
84	Trabeculectomy and Combined Phacoemulsification-Trabeculectomy: Outcomes and Risk Factors for Failure in Primary Angle Closure Glaucoma. Journal of Glaucoma, 2016, 25, 763-769.	1.6	38
85	Trabeculectomy Can Improve Long-Term Visual Function in Glaucoma. Ophthalmology, 2016, 123, 117-128.	5.2	80
86	Optic Nerve Head and RNFL Imaging: Comparison of Technologies. , 2016, , 63-70.		1
87	Location of Initial Visual Field Defects in Glaucoma and Their Modes of Deterioration. , 2015, 56, 7956.		34
88	The Fast Component of Visual Field Decay Rate Correlates With Disc Rim Area Change Throughout the Entire Range of Glaucomatous Damage. , 2015, 56, 5997.		8
89	Measuring Glaucoma Progression in Clinical Practice. , 2015, , 268-276.		0
90	Reply. American Journal of Ophthalmology, 2015, 159, 410-411.	3.3	0

#	Article	IF	CITATIONS
91	Valved Glaucoma Drainage Devices in Pediatric Glaucoma. JAMA Ophthalmology, 2015, 133, 1030.	2.5	46
92	Prospective Evaluation of Acupuncture asÂTreatment for Glaucoma. American Journal of Ophthalmology, 2015, 160, 256-265.	3.3	15
93	Celastrol supports survival of retinal ganglion cells injured by optic nerve crush. Brain Research, 2015, 1609, 21-30.	2.2	22
94	Long-Term Bleb-Related Infections After Trabeculectomy: Incidence, Risk Factors, andÂInfluence of Bleb Revision. American Journal of Ophthalmology, 2015, 159, 1082-1091.	3.3	70
95	Special Commentary: Supporting Innovation for Safe and Effective Minimally Invasive Glaucoma Surgery. Ophthalmology, 2015, 122, 1795-1801.	5.2	65
96	Programmed cell death-1 is expressed in large retinal ganglion cells and is upregulated after optic nerve crush. Experimental Eye Research, 2015, 140, 1-9.	2.6	13
97	Index to Estimate the Efficiency of an Ophthalmic Practice. JAMA Ophthalmology, 2015, 133, 924.	2.5	0
98	The Effect of Corneal Biomechanical Properties on Rebound Tonometer in Patients With Normal-Tension Glaucoma. American Journal of Ophthalmology, 2015, 159, 144-154.	3.3	37
99	Measuring rates of structural and functional change in glaucoma. British Journal of Ophthalmology, 2015, 99, 893-898.	3.9	26
100	Baseline Prognostic Factors Predict Rapid Visual Field Deterioration in Glaucoma. , 2014, 55, 2228.		46
101	Prevalence and Spatial Concordance of Visual Field Deterioration in Fellow Eyes of Glaucoma Patients. Korean Journal of Ophthalmology: KJO, 2014, 28, 436.	1.1	1
102	Bis(Zinc-Dipicolylamine), Zn-DPA, a New Marker for Apoptosis. , 2014, 55, 4913.		21
103	Influence of Correction of Ocular Magnification on Spectral-Domain OCT Retinal Nerve Fiber Layer Measurement Variability and Performance. , 2014, 55, 3439.		38
104	Comparison of regression models for serial visual field analysis. Japanese Journal of Ophthalmology, 2014, 58, 504-514.	1.9	7
105	Technique of Combined Glaucoma Tube Shunt and Keratoprosthesis Implantation. Journal of Glaucoma, 2014, 23, 501-507.	1.6	15
106	Disc haemorrhage is associated with the fast component, but not the slow component, of visual field decay rate in glaucoma. British Journal of Ophthalmology, 2014, 98, 1555-1559.	3.9	25
107	Effect of Cataract Extraction on the Visual Field Decay Rate in Patients With Glaucoma. JAMA Ophthalmology, 2014, 132, 1296.	2.5	15
108	Models of Glaucomatous Visual Field Loss. Investigative Ophthalmology and Visual Science, 2014, 55, 7881-7887.	3.3	37

#	Article	IF	CITATIONS
109	Performance of the Visual Field Index in Glaucoma Patients With Moderately Advanced Visual Field Loss. American Journal of Ophthalmology, 2014, 157, 39-43.	3.3	23
110	Long-term Outcomes of Resident- Versus Attending-Performed Primary Trabeculectomy With Mitomycin C in a United States Residency Program. American Journal of Ophthalmology, 2014, 157, 1190-1201.	3.3	39
111	Influence of the Disc–Fovea Angle on Limits of RNFL Variability and Glaucoma Discrimination. , 2014, 55, 7332.		46
112	The Circadian Changes of Intraocular Pressure and Ocular Perfusion Pressure After Tafluprost Compared with Travoprost in Normal Tension Glaucoma. Journal of Ocular Pharmacology and Therapeutics, 2014, 30, 803-809.	1.4	5
113	Bleb Revision for Resolution of Hypotony Maculopathy Following Primary Trabeculectomy. American Journal of Ophthalmology, 2014, 158, 597-604.e1.	3.3	22
114	Reply. American Journal of Ophthalmology, 2014, 158, 211-212.	3.3	2
115	New directions in the treatment of normal tension glaucoma. Indian Journal of Ophthalmology, 2014, 62, 529.	1.1	47
116	Peripapillary and macular choroidal thickness in glaucoma. Journal of Ophthalmic and Vision Research, 2014, 9, 154-61.	1.0	24
117	Crystallins in Retinal Ganglion Cell Survival and Regeneration. Molecular Neurobiology, 2013, 48, 819-828.	4.0	42
118	Macular Ganglion Cell/Inner Plexiform Layer Measurements by Spectral Domain Optical Coherence Tomography for Detection of Early Glaucoma and Comparison to Retinal Nerve Fiber Layer Measurements. American Journal of Ophthalmology, 2013, 156, 1297-1307.e2.	3.3	132
119	Comparison of Clinical Characteristics Between Korean and Western Normal-Tension Glaucoma Patients. American Journal of Ophthalmology, 2013, 155, 852-857.e1.	3.3	14
120	Comparison of localized retinal nerve fiber layer defects in highly myopic, myopic, and non-myopic patients with normal-tension glaucoma: a retrospective cross-sectional study. BMC Ophthalmology, 2013, 13, 67.	1.4	21
121	Measurement of the Optic Disc Vertical Tilt Angle With Spectral-Domain Optical Coherence Tomography and Influencing Factors. American Journal of Ophthalmology, 2013, 156, 737-744.e1.	3.3	70
122	The dark phase intraocular pressure elevation and retinal ganglion cell degeneration in a rat model of experimental glaucoma. Experimental Eye Research, 2013, 112, 21-28.	2.6	28
123	Global and Pointwise Rates of Decay in Glaucoma Eyes Deteriorating according to Pointwise Event Analysis. , 2013, 54, 1208.		19
124	Long-term outcomes of primary trabeculectomy in diabetic patients with primary open angle glaucoma. British Journal of Ophthalmology, 2013, 97, 561-566.	3.9	22
125	Comparison of Results of Initial Trabeculectomy With Mitomycin C After Prior Clear-corneal Phacoemulsification to Outcomes in Phakic Eyes. Journal of Glaucoma, 2013, 22, 52-59.	1.6	22

126 Glaucoma: A Disease of Early Cellular Senescence. , 2013, 54, ORSF60.

#	Article	IF	CITATIONS
127	Common Variants at 9p21 and 8q22 Are Associated with Increased Susceptibility to Optic Nerve Degeneration in Glaucoma. PLoS Genetics, 2012, 8, e1002654.	3.5	276
128	Structure–Function Relationships between Spectral-Domain OCT and Standard Achromatic Perimetry. , 2012, 53, 2740.		66
129	Validation of Point-Wise Exponential Regression to Measure the Decay Rates of Glaucomatous Visual Fields. , 2012, 53, 5403.		31
130	Neuronal Programmed Cell Death-1 Ligand Expression Regulates Retinal Ganglion Cell Number in Neonatal and Adult Mice. Journal of Neuro-Ophthalmology, 2012, 32, 227-237.	0.8	12
131	The Association between Retinal Vessel Diameter and Retinal Nerve Fiber Layer Thickness in Asymmetric Normal Tension Glaucoma Patients. , 2012, 53, 5609.		43
132	Surgical Management of Pediatric Glaucoma. Developments in Ophthalmology, 2012, 50, 157-172.	0.1	35
133	Development of a Resident Training Module for Systematic Optic Disc Evaluation in Glaucoma. Journal of Glaucoma, 2012, 21, 601-607.	1.6	11
134	Longitudinal Structure-Function Relationships With Scanning Laser Ophthalmoscopy and Standard Achromatic Perimetry. JAMA Ophthalmology, 2012, 130, 826.	2.4	10
135	Measurement of Optic Disc Size and Rim Area with Spectral-Domain OCT and Scanning Laser Ophthalmoscopy. , 2012, 53, 4519.		67
136	Changes in intraocular pressure after pharmacologic pupil dilation. BMC Ophthalmology, 2012, 12, 53.	1.4	30
137	Author Response: On Alternative Methods for Measuring Visual Field Decay: Tobit Linear Regression. , 2012, 53, 118.		8
138	Pointwise Rates of Visual Field Progression Cluster according to Retinal Nerve Fiber Layer Bundles. , 2012, 53, 2390.		31
139	Coupled parametric model for estimation of visual field tests based on OCT macular thickness maps, and vice versa, in glaucoma care. Medical Image Analysis, 2012, 16, 101-113.	11.6	5
140	The Neuronal EGF-Related Gene Nell2 Interacts with Macf1 and Supports Survival of Retinal Ganglion Cells after Optic Nerve Injury. PLoS ONE, 2012, 7, e34810.	2.5	22
141	Control of Intraocular Pressure and Fluctuation With Fixed-Combination Brimonidine–Timolol Versus Brimonidine or Timolol Monotherapy. American Journal of Ophthalmology, 2011, 151, 93-99.e4.	3.3	21
142	Patterns of Damage in Chronic Angle-Closure Glaucoma Compared to Primary Open-Angle Glaucoma. American Journal of Ophthalmology, 2011, 152, 74-80.e2.	3.3	21
143	The Tube Versus Trabeculectomy Study: why its Findings May Not Change Clinical Practice?. American Journal of Ophthalmology, 2011, 151, 742-744.e1.	3.3	19
144	Intraocular Pressure: Modulation as Treatment for Glaucoma. American Journal of Ophthalmology, 2011, 152, 340-344.e2.	3.3	47

#	Article	IF	CITATIONS
145	Quantitative Analysis of Retinal Ganglion Cell Survival with Rbpms Immunolabeling in Animal Models of Optic Neuropathies. , 2011, 52, 9694.		63
146	A Method to Measure and Predict Rates of Regional Visual Field Decay in Glaucoma. Investigative Ophthalmology and Visual Science, 2011, 52, 4765-4773.	3.3	80
147	Influence of Visual Field Testing Frequency on Detection of Glaucoma Progression With Trend Analyses. JAMA Ophthalmology, 2011, 129, 1521.	2.4	40
148	Detection of visual field progression in glaucoma with standard achromatic perimetry: A review and practical implications. Graefe's Archive for Clinical and Experimental Ophthalmology, 2011, 249, 1593-1616.	1.9	31
149	IOP: quantity and quality. Bulletin De La Société Belge D'ophtalmologie, 2011, , 7-10.	0.0	2
150	RNA Binding Protein with Multiple Splicing: A New Marker for Retinal Ganglion Cells. , 2010, 51, 1052.		151
151	Characterization of Retinal Nerve Fiber Layer in Nonglaucomatous Eyes With Tilted Discs. JAMA Ophthalmology, 2010, 128, 141.	2.4	26
152	Blood Pressure, Perfusion Pressure, and Glaucoma. American Journal of Ophthalmology, 2010, 149, 704-712.	3.3	281
153	Pars Plana Anterior Vitrectomy, Hyaloido-Zonulectomy, and Iridectomy for Aqueous Humor Misdirection. American Journal of Ophthalmology, 2010, 150, 82-87.e1.	3.3	46
154	Graft Failure After Penetrating Keratoplasty in Eyes With Ahmed Valves. American Journal of Ophthalmology, 2010, 150, 169-178.	3.3	50
155	Thioredoxins 1 and 2 Protect Retinal Ganglion Cells from Pharmacologically Induced Oxidative Stress, Optic Nerve Transection and Ocular Hypertension. Advances in Experimental Medicine and Biology, 2010, 664, 355-363.	1.6	16
156	Animal Models of Retinal Ischemia. Neuromethods, 2010, , 191-206.	0.3	1
157	Clinical cystoid macular edema after cataract surgery in glaucoma patients. Journal of Glaucoma, 2010, 19, 100-4.	1.6	9
158	Outcomes of Ahmed Glaucoma Valve Implantation in Children With Primary Congenital Glaucoma. JAMA Ophthalmology, 2009, 127, 1436.	2.4	58
159	Optic Disc Progression in Glaucoma: Comparison of Confocal Scanning Laser Tomography to Optic Disc Photographs in a Prospective Study. , 2009, 50, 1682.		56
160	The Role of αA- and αB-Crystallins in the Survival of Retinal Ganglion Cells after Optic Nerve Axotomy. , 2009, 50, 3869.		62
161	Pressure Fluctuation. Ophthalmology, 2009, 116, 817.	5.2	1
162	The Logic Behind Target Intraocular Pressure. American Journal of Ophthalmology, 2009, 147, 379-380.	3.3	18

#	Article	IF	CITATIONS
163	Concordance of Retinal Nerve Fiber Layer Defects between Fellow Eyes of Glaucoma Patients Measured by Optical Coherence Tomography. American Journal of Ophthalmology, 2009, 148, 148-154.	3.3	5
164	Long-term Outcomes of Repeat vs Initial Trabeculectomy in Open-Angle Glaucoma. American Journal of Ophthalmology, 2009, 148, 685-695.e1.	3.3	122
165	Dynamic Tube Movement of Ahmed Glaucoma Valve. Journal of Glaucoma, 2009, 18, 628-631.	1.6	28
166	A Critical Discussion of the Rates of Progression and Causes of Optic Nerve Damage in Glaucoma: International Glaucoma Think Tank II: July 25-26, 2008, Florence, Italy. Journal of Glaucoma, 2009, 18, S1-S21.	1.6	11
167	Overexpression of thioredoxins 1 and 2 increases retinal ganglion cell survival after pharmacologically induced oxidative stress, optic nerve transection, and in experimental glaucoma. Transactions of the American Ophthalmological Society, 2009, 107, 161-5.	1.4	22
168	Activation of autophagy in retinal ganglion cells. Journal of Neuroscience Research, 2008, 86, 2943-2951.	2.9	74
169	Expression of heat shock transcription factors and heat shock protein 72 in rat retina after intravitreal injection of low dose N-methyl-d-aspartate. Neuroscience Letters, 2008, 433, 11-16.	2.1	18
170	The Importance of Rates in Glaucoma. American Journal of Ophthalmology, 2008, 145, 191-192.	3.3	77
171	Hemorrhagic Complications from Glaucoma Surgery in Patients on Anticoagulation Therapy or Antiplatelet Therapy. American Journal of Ophthalmology, 2008, 145, 736-746.e1.	3.3	58
172	Intraocular Pressure Fluctuation. Ophthalmology, 2008, 115, 1123-1129.e3.	5.2	434
173	The treatment of normal-tension glaucoma. Progress in Brain Research, 2008, 173, 195-210.	1.4	14
174	Detection of Early Glaucoma With Optical Coherence Tomography (StratusOCT). Journal of Glaucoma, 2008, 17, 183-188.	1.6	51
175	Neuroprotection in Glaucoma. , 2008, , 423-442.		Ο
176	Protective Effect of Thioredoxins 1 and 2 in Retinal Ganglion Cells after Optic Nerve Transection and Oxidative Stress. , 2008, 49, 3535.		50
177	Severe Loss of Central Vision in Patients With Advanced Glaucoma Undergoing Trabeculectomy. JAMA Ophthalmology, 2007, 125, 1044.	2.4	75
178	Comparison of Methods to Predict Visual Field Progression in Glaucoma. JAMA Ophthalmology, 2007, 125, 1176.	2.4	65
179	Frequency Doubling Perimetry and Short-Wavelength Automated Perimetry to Detect Early Glaucoma. Ophthalmology, 2007, 114, 931-937.	5.2	23
180	Frequency-Doubling Perimetry: Comparison With Standard Automated Perimetry to Detect Glaucoma. American Journal of Ophthalmology, 2007, 143, 263-271.e1.	3.3	42

#	Article	lF	CITATIONS
181	Optic Disk and Nerve Fiber Layer Imaging to Detect Glaucoma. American Journal of Ophthalmology, 2007, 144, 724-732.	3.3	114
182	Long-term Outcomes of Ahmed Glaucoma Valve Implantation in Refractory Glaucomas. American Journal of Ophthalmology, 2007, 144, 893-900.	3.3	142
183	Intraocular Pressure Fluctuation. JAMA Ophthalmology, 2007, 125, 1124.	2.4	53
184	Modulation of alpha and beta crystallin expression in rat retinas with ocular hypertension-induced ganglion cell degeneration. Brain Research, 2007, 1141, 1-9.	2.2	65
185	Comparison of Retinal Nerve Fiber Layer Thickness and Optic Disk Algorithms with Optical Coherence Tomography to Detect Glaucoma. American Journal of Ophthalmology, 2006, 141, 105-115.e1.	3.3	96
186	Trabeculectomy With Mitomycin C in Pseudophakic Patients With Open-angle Glaucoma: Outcomes and Risk Factors For Failure. American Journal of Ophthalmology, 2006, 141, 652-659.	3.3	103
187	Expression of phosphorylated c-Jun N-terminal protein kinase (JNK) in experimental glaucoma in rats. Experimental Eye Research, 2006, 82, 576-582.	2.6	41
188	Expression of hermes gene is restricted to the ganglion cells in the retina. Neuroscience Letters, 2006, 405, 40-45.	2.1	21
189	Co-expression of heat shock transcription factors 1 and 2 in rat retinal ganglion cells. Neuroscience Letters, 2006, 405, 191-195.	2.1	21
190	Trabeculectomy with Mitomycin C. Ophthalmology, 2006, 113, 930-936.	5.2	172
191	Outcomes of Laser Suture Lysis After Initial Trabeculectomy With Adjunctive Mitomycin C. Journal of Glaucoma, 2006, 15, 60-67.	1.6	33
192	Diagnosing glaucoma progression: current practice and promising technologies. Current Opinion in Ophthalmology, 2006, 17, 153-162.	2.9	29
193	Pointwise Linear Regression Analysis for Detection of Visual Field Progression with Absolute versus Corrected Threshold Sensitivities. , 2006, 47, 2896.		26
194	Optic disc imaging in perimetrically normal eyes of glaucoma patients with unilateral field loss. Transactions of the American Ophthalmological Society, 2006, 104, 202-11.	1.4	22
195	Gene expression changes in the retina following optic nerve transection. Molecular Vision, 2006, 12, 1660-73.	1.1	24
196	Sequential Office Pressure Measurements in the Management of Glaucoma. Journal of Glaucoma, 2005, 14, 196-200.	1.6	49
197	Calpain and N-methyl-d-aspartate (NMDA)-induced excitotoxicity in rat retinas. Brain Research, 2005, 1046, 207-215.	2.2	55
198	Pointwise Linear Regression for Evaluation of Visual Field Outcomes and Comparison With the Advanced Glaucoma Intervention Study Methods. JAMA Ophthalmology, 2005, 123, 193.	2.4	67

#	Article	IF	CITATIONS
199	Comparison of Safety and Efficacy between Silicone and Polypropylene Ahmed Glaucoma Valves in Refractory Glaucoma. Ophthalmology, 2005, 112, 1514-1520.	5.2	72
200	Feasibility and Efficacy of a Mass Switch from Latanoprost to Bimatoprost in Glaucoma Patients in a Prepaid Health Maintenance Organization. Ophthalmology, 2005, 112, 2123-2130.	5.2	40
201	Outcomes of Small-Incision Cataract Surgery in Eyes With Preexisting Ahmed Glaucoma Valves. American Journal of Ophthalmology, 2005, 140, 911-913.	3.3	25
202	Relationship between Visual Field Sensitivity and Retinal Nerve Fiber Layer Thickness as Measured by Scanning Laser Polarimetry. , 2004, 45, 1823.		165
203	Prediction of Visual Field Progression in Glaucoma. , 2004, 45, 4346.		72
204	Variable corneal compensation improves discrimination between normal and glaucomatous eyes with the scanning laser polarimeter. Ophthalmology, 2004, 111, 259-264.	5.2	57
205	Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study. Ophthalmology, 2004, 111, 1627-1635.	5.2	629
206	Optical coherence tomography to detect and manage retinal disease and glaucoma. American Journal of Ophthalmology, 2004, 137, 156-169.	3.3	442
207	Identifying early glaucoma with optical coherence tomography. American Journal of Ophthalmology, 2004, 137, 228-235.	3.3	157
208	Optic disk appearance in advanced age-related macular degeneration. American Journal of Ophthalmology, 2004, 138, 38-45.	3.3	21
209	Visual field changes after cataract extraction: The AGIS experience. American Journal of Ophthalmology, 2004, 138, 1022-1028.	3.3	70
210	Baerveldt-350 Implant versus Ahmed Valve for Refractory Glaucoma. Journal of Glaucoma, 2004, 13, 38-45.	1.6	129
211	Hyperthermic pre-conditioning protects retinal neurons from N-methyl-d-aspartate (NMDA)-induced apoptosis in rat. Brain Research, 2003, 970, 119-130.	2.2	47
212	Neural networks to identify glaucomatous visual field progression. American Journal of Ophthalmology, 2003, 135, 49-54.	3.3	30
213	Evaluation of the hypertensive phase after insertion of the Ahmed Glaucoma Valve. American Journal of Ophthalmology, 2003, 136, 1001-1008.	3.3	229
214	Evaluating several sources of variability for standard and SWAP visual fields in glaucoma patients, suspects, and normals. Ophthalmology, 2003, 110, 1895-1902.	5.2	53
215	2-Deoxy-D-glucose protects retinal ganglion cells against excitotoxicity. NeuroReport, 2003, 14, 2369-2372.	1.2	3
216	Retinal Ganglion Cell Protection with Geranylgeranylacetone, a Heat Shock Protein Inducer, in a Rat Glaucoma Model. , 2003, 44, 1982.		140

#	Article	IF	CITATIONS
217	Glaucoma Care in a Patient With Previous Anterior Ciliary Sclerotomy and Scleral Expansion Procedure. JAMA Ophthalmology, 2003, 121, 1646.	2.4	2
218	Retinal ganglion cell protection with geranylgeranylacetone, a heat shock protein inducer, in a rat glaucoma model. Transactions of the American Ophthalmological Society, 2003, 101, 39-50; discussion 50-1.	1.4	13
219	Retinal ganglion cell protection with geranylgeranylacetone, a heat shock protein inducer, in a rat glaucoma model. Investigative Ophthalmology and Visual Science, 2003, 44, 1982-92.	3.3	50
220	Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma. Investigative Ophthalmology and Visual Science, 2002, 43, 140-5.	3.3	185
221	Correction for the erroneous compensation of anterior segment birefringence with the scanning laser polarimeter for glaucoma diagnosis. Investigative Ophthalmology and Visual Science, 2002, 43, 1465-74.	3.3	44
222	Should we use short-wavelength automated perimetry to test glaucoma patients?. American Journal of Ophthalmology, 2001, 131, 792-794.	3.3	6
223	Interobserver variability of optic disk variables measured by confocal scanning laser tomography. American Journal of Ophthalmology, 2001, 132, 57-62.	3.3	56
224	Optic disk characteristics before the occurrence of disk hemorrhage in glaucoma patients. American Journal of Ophthalmology, 2001, 132, 411-413.	3.3	40
225	Serial axial length measurements in congenital glaucoma. American Journal of Ophthalmology, 2001, 132, 926-928.	3.3	47
226	Ability of Peripapillary Atrophy Parameters to Differentiate Normal-tension Glaucoma From Glaucomalike Disk. Journal of Glaucoma, 2001, 10, 95-101.	1.6	26
227	Randomized, controlled study of low-dose 5-fluorouracil in primary trabeculectomy. American Journal of Ophthalmology, 2000, 130, 700-703.	3.3	17
228	Relationship between structural abnormalities and short-wavelength perimetric defects in eyes at risk of glaucoma. American Journal of Ophthalmology, 2000, 129, 592-598.	3.3	33
229	Acquired pits of the optic nerve in glaucoma, Prevalence and associated visual field loss. Acta Ophthalmologica, 1998, 76, 273-277.	0.3	27
230	Increasing peripapillary atrophy is associated with progressive glaucoma. Ophthalmology, 1998, 105, 1541-1545.	5.2	142
231	Test-retest variability of blue-on-yellow perimetry is greater than white-on-white perimetry in normal subjects. American Journal of Ophthalmology, 1998, 126, 29-36.	3.3	48
232	Acquired pit of the optic nerve: A risk factor for progression of glaucoma. American Journal of Ophthalmology, 1998, 125, 457-464.	3.3	46
233	Criteria for success of surgical treatment of glaucoma. Current Opinion in Ophthalmology, 1997, 8, 68-72.	2.9	7
234	Comparison of Methods to Detect Visual Field Progression in Glaucoma. Ophthalmology, 1997, 104, 1228-1236.	5.2	74

#	Article	IF	CITATIONS
235	Neuroprotection of the optic nerve in glaucoma. Acta Ophthalmologica, 1997, 75, 364-367.	0.3	42
236	Hypoxic and Excitotoxic Damage to Cultured Rat Retinal Ganglion Cells. Experimental Eye Research, 1996, 63, 105-112.	2.6	64
237	Comparison of Methods to Evaluate the Optic Nerve Head and Nerve Fiber Layer for Glaucomatous Change. American Journal of Ophthalmology, 1996, 121, 659-667.	3.3	65
238	Formulas for conversion between Octopus and Humphrey threshold values and indices. Graefe's Archive for Clinical and Experimental Ophthalmology, 1995, 233, 627-634.	1.9	26
239	Regional Test-Retest Variability of Confocal Scanning Laser Tomography. American Journal of Ophthalmology, 1995, 120, 433-440.	3.3	43
240	Outcomes of Trabeculectomy for Primary Open-angle Glaucoma. Ophthalmology, 1995, 102, 1760-1769.	5.2	146
241	An Evaluation of Clusters in the Glaucomatous Visual Field. American Journal of Ophthalmology, 1993, 116, 684-691.	3.3	40
242	Long-term Fluctuation of the Visual Field in Glaucoma. American Journal of Ophthalmology, 1992, 113, 396-400.	3.3	64
243	What Constitutes Progression of Glaucomatous Visual Field Defects?. Seminars in Ophthalmology, 1992, 7, 130-146.	1.6	10
244	Disc and field damage in patients with unilateral visual field loss from primary open-angle glaucoma. Documenta Ophthalmologica, 1992, 82, 279-286.	2.2	16
245	An optimal reference plane to detect glaucomatous nerve fiber layer abnormalities with computerized image analysis. Graefe's Archive for Clinical and Experimental Ophthalmology, 1992, 230, 124-128.	1.9	13
246	Digital image analysis of optic nerve head pallor as a diagnostic test for early glaucoma. Graefe's Archive for Clinical and Experimental Ophthalmology, 1992, 230, 432-436.	1.9	7
247	Rat retinal ganglion cells in culture. Experimental Eye Research, 1991, 53, 565-572.	2.6	13
248	Automated Perimetry in Glaucoma. American Journal of Ophthalmology, 1991, 111, 235-239.	3.3	110
249	The Contour of the Juxtapapillary Nerve Fiber Layer in Glaucoma. Ophthalmology, 1990, 97, 358-366.	5.2	86
250	Measurement of Relative Nerve Fiver Layer Surface Height in Glaucoma. Ophthalmology, 1989, 96, 633-641.	5.2	88
251	Measurements of Peripapillary Nerve Fiber Layer Contour in Glaucoma. American Journal of Ophthalmology, 1989, 108, 404-413.	3.3	51
252	Measurement of optic nerve blood flow with iodoantipyrine: Limitations caused by diffusion from the choroid. Experimental Eye Research, 1988, 47, 641-652.	2.6	6

#	Article	IF	CITATIONS
253	Computerized image analysis of the optic nerve head in Neuro-Ophthalmology. Neuro-Ophthalmology, 1987, 7, 139-145.	1.0	2
254	Quantitative Evaluation of the Optic Nerve Head in Patients with Unilateral Visual Field Loss from Primary Open-angle Glaucoma. Ophthalmology, 1987, 94, 1484-1487.	5.2	91
255	The pathogenesis and medical management of glaucoma. Drug Development Research, 1985, 6, 193-215.	2.9	25
256	Cyclocryotherapy in the Treatment of Advanced Glaucoma. Ophthalmology, 1985, 92, 947-954.	5.2	125
257	Ocular Effect of Neodymium-Yag Laser. American Journal of Ophthalmology, 1984, 98, 144-152.	3.3	33
258	Comparison of Visual Field Defects in the Low-Tension Glaucomas with Those in the High-Tension Glaucomas. American Journal of Ophthalmology, 1984, 97, 730-737.	3.3	206
259	Ocular blood flow in phakic and aphakic monkey eyes. Experimental Eye Research, 1984, 39, 1-7.	2.6	13
260	Combined effect of forskolin and acetazolamide on intraocular pressure and aqueous flow in rabbit eyes. Experimental Eye Research, 1984, 39, 47-50.	2.6	27
261	FORSKOLIN LOWERS INTRAOCULAR PRESSURE IN RABBITS, MONKEYS, AND MAN. Lancet, The, 1983, 321, 958-960.	13.7	102