Anish Tuteja

List of Publications by Citations

Source: https://exaly.com/author-pdf/3536588/anish-tuteja-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

43 7,107 26 46 g-index

46 7,898 10.1 6.02 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
43	Designing superoleophobic surfaces. <i>Science</i> , 2007 , 318, 1618-22	33.3	2287
42	Robust omniphobic surfaces. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 18200-5	11.5	891
41	Hygro-responsive membranes for effective oil-water separation. <i>Nature Communications</i> , 2012 , 3, 1025	17.4	884
40	Superomniphobic surfaces for effective chemical shielding. <i>Journal of the American Chemical Society</i> , 2013 , 135, 578-81	16.4	388
39	Designing durable icephobic surfaces. <i>Science Advances</i> , 2016 , 2, e1501496	14.3	341
38	Design Parameters for Superhydrophobicity and Superoleophobicity. MRS Bulletin, 2008, 33, 752-758	3.2	285
37	Hierarchically structured superoleophobic surfaces with ultralow contact angle hysteresis. <i>Advanced Materials</i> , 2012 , 24, 5838-43	24	261
36	The design and applications of superomniphobic surfaces. NPG Asia Materials, 2014, 6, e109-e109	10.3	241
35	Low-interfacial toughness materials for effective large-scale deicing. <i>Science</i> , 2019 , 364, 371-375	33.3	166
34	Designing Self-Healing Superhydrophobic Surfaces with Exceptional Mechanical Durability. <i>ACS Applied Materials & Designing Self-Healing Superhydrophobic Surfaces with Exceptional Mechanical Durability. ACS Applied Materials & Durability. ACS App</i>	9.5	139
33	Superomniphobic surfaces: Design and durability. MRS Bulletin, 2013, 38, 383-390	3.2	133
32	Scale dependence of omniphobic mesh surfaces. <i>Langmuir</i> , 2010 , 26, 4027-35	4	121
31	Transparent, flexible, superomniphobic surfaces with ultra-low contact angle hysteresis. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 13007-11	16.4	99
30	A predictive framework for the design and fabrication of icephobic polymers. <i>Science Advances</i> , 2017 , 3, e1701617	14.3	78
29	Characterization of superhydrophobic surfaces for drag reduction in turbulent flow. <i>Journal of Fluid Mechanics</i> , 2018 , 845, 560-580	3.7	75
28	Patterned superomniphobic-superomniphilic surfaces: templates for site-selective self-assembly. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 10109-13	16.4	73
27	Superoleophobic surfaces through control of sprayed-on stochastic topography. <i>Langmuir</i> , 2012 , 28, 9834-41	4	70

(2019-2015)

26	Membranes with selective wettability for the separation of oil-water mixtures. <i>MRS Communications</i> , 2015 , 5, 475-494	2.7	65
25	Paper-Based Surfaces with Extreme Wettabilities for Novel, Open-Channel Microfluidic Devices. <i>Advanced Functional Materials</i> , 2016 , 26, 6121-6131	15.6	63
24	Smooth, All-Solid, Low-Hysteresis, Omniphobic Surfaces with Enhanced Mechanical Durability. <i>ACS Applied Materials & Description (Materials & Description of Materials & Description (Materials & Description)</i>	9.5	59
23	High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces. <i>Journal of Fluid Mechanics</i> , 2016 , 801, 670-703	3.7	59
22	Bioinspired surfaces for turbulent drag reduction. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2016 , 374,	3	52
21	Rational Design of Hyperbranched Nanowire Systems for Tunable Superomniphobic Surfaces Enabled by Atomic Layer Deposition. <i>ACS Nano</i> , 2017 , 11, 478-489	16.7	45
20	Influence of textural statistics on drag reduction by scalable, randomly rough superhydrophobic surfaces in turbulent flow. <i>Physics of Fluids</i> , 2019 , 31, 042107	4.4	39
19	Open-channel, water-in-oil emulsification in paper-based microfluidic devices. <i>Lab on A Chip</i> , 2017 , 17, 1436-1441	7.2	29
18	Design and applications of surfaces that control the accretion of matter. <i>Science</i> , 2021 , 373,	33.3	26
17	Wettability engendered templated self-assembly (WETS) for fabricating multiphasic particles. <i>ACS Applied Materials & Description (Methodology)</i> 1, 4075-80	9.5	20
16	Design of surfaces for controlling hard and soft fouling. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2019 , 377, 20180266	3	18
15	Patterned SuperomniphobicBuperomniphilic Surfaces: Templates for Site-Selective Self-Assembly. <i>Angewandte Chemie</i> , 2012 , 124, 10256-10260	3.6	14
14	Superoleophobic Surfaces. ACS Symposium Series, 2012, 171-185	0.4	13
13	Superoleophobic Surfaces: Hierarchically Structured Superoleophobic Surfaces with Ultralow Contact Angle Hysteresis (Adv. Mater. 43/2012). <i>Advanced Materials</i> , 2012 , 24, 5837-5837	24	10
12	Transparent, Flexible, Superomniphobic Surfaces with Ultra-Low Contact Angle Hysteresis. <i>Angewandte Chemie</i> , 2013 , 125, 13245-13249	3.6	10
11	Rational Design of Transparent Nanowire Architectures with Tunable Geometries for Preventing Marine Fouling. <i>Advanced Materials Interfaces</i> , 2020 , 7, 2000672	4.6	10
10	Non-Fluorinated, Superhydrophobic Binder-Filler Coatings on Smooth Surfaces: Controlled Phase Separation of Particles to Enhance Mechanical Durability. <i>Langmuir</i> , 2021 , 37, 3104-3112	4	8
9	Wettability Engendered Templated Self-Assembly (WETS) for the Fabrication of Biocompatible, Polymer P olyelectrolyte Janus Particles. <i>ACS Macro Letters</i> , 2019 , 8, 1491-1497	6.6	6

8	Lysis and direct detection of coliforms on printed paper-based microfluidic devices. <i>Lab on A Chip</i> , 2020 , 20, 4413-4419	7.2	5
7	Rapid and Robust Surface Treatment for Simultaneous Solid and Liquid Repellency. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 ,	9.5	4
6	Inkjet-printed micro-calibration standards for ultraquantitative Raman spectral cytometry. <i>Analyst, The</i> , 2019 , 144, 3790-3799	5	3
5	Surface design strategies for mitigating ice and snow accretion. <i>Matter</i> , 2022 , 5, 1423-1454	12.7	3
4	Facilitating Large-Scale Snow Shedding from In-Field Solar Arrays using Icephobic Surfaces with Low-Interfacial Toughness. <i>Advanced Materials Technologies</i> ,2101032	6.8	2
3	Novel Omniphobic Platform for Multicellular Spheroid Generation, Drug Screening, and On-Plate Analysis. <i>Analytical Chemistry</i> , 2021 , 93, 8054-8061	7.8	1
2	Innenr©ktitelbild: Transparent, Flexible, Superomniphobic Surfaces with Ultra-Low Contact Angle Hysteresis (Angew. Chem. 49/2013). <i>Angewandte Chemie</i> , 2013 , 125, 13343-13343	3.6	
1	Continuous Liquid-Liquid Extraction and in-Situ Membrane Separation of Miscible Liquid Mixtures. <i>Langmuir</i> , 2021 , 37, 13595-13601	4	