
Shengzheng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3536516/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural Simplification of Natural Products. Chemical Reviews, 2019, 119, 4180-4220.	23.0	157
2	Scaffold Diversity Inspired by the Natural Product Evodiamine: Discovery of Highly Potent and Multitargeting Antitumor Agents. Journal of Medicinal Chemistry, 2015, 58, 6678-6696.	2.9	156
3	Meeting Organocatalysis with Drug Discovery: Asymmetric Synthesis of 3,3′-Spirooxindoles Fused with Tetrahydrothiopyrans as Novel p53-MDM2 Inhibitors. Organic Letters, 2016, 18, 1028-1031.	2.4	77
4	Design, synthesis and antifungal activity of novel triazole derivatives containing substituted 1,2,3-triazole-piperdine side chains. European Journal of Medicinal Chemistry, 2014, 82, 490-497.	2.6	68
5	Divergent Cascade Construction of Skeletally Diverse "Privileged―Pyrazoleâ€Derived Molecular Architectures. European Journal of Organic Chemistry, 2015, 2015, 2030-2037.	1.2	67
6	Novel Carboline Derivatives as Potent Antifungal Lead Compounds: Design, Synthesis, and Biological Evaluation. ACS Medicinal Chemistry Letters, 2014, 5, 506-511.	1.3	49
7	Structural simplification: an efficient strategy in lead optimization. Acta Pharmaceutica Sinica B, 2019, 9, 880-901.	5.7	49
8	Facile Construction of Structurally Diverse Thiazolidinedione-Derived Compounds via Divergent Stereoselective Cascade Organocatalysis and Their Biological Exploratory Studies. ACS Combinatorial Science, 2013, 15, 298-308.	3.8	41
9	Recent Progress in the Discovery of Antifungal Agents Targeting the Cell Wall. Journal of Medicinal Chemistry, 2020, 63, 12429-12459.	2.9	37
10	Design, synthesis and biological activity of piperlongumine derivatives as selective anticancer agents. European Journal of Medicinal Chemistry, 2014, 82, 545-551.	2.6	33
11	Asymmetric Synthesis of Chiral Dihydrothiopyrans via an Organocatalytic Enantioselective Formal Thio [3 + 3] Cycloaddition Reaction with Binucleophilic Bisketone Thioethers. Organic Letters, 2013, 15, 5570-5573.	2.4	31
12	Synthesis of spiro-tetrahydrothiopyran-oxindoles by Michael–aldol cascade reactions: discovery of potential P53-MDM2 inhibitors with good antitumor activity. Organic and Biomolecular Chemistry, 2018, 16, 625-634.	1.5	25
13	Resveratrol: Multi-Targets Mechanism on Neurodegenerative Diseases Based on Network Pharmacology. Frontiers in Pharmacology, 2020, 11, 694.	1.6	25
14	Facile Assembly of Chiral Tetrahydrothiopyrans Containing Four Consecutive Stereocenters via an Organocatalytic Enantioselective Michael–Michael Cascade. Organic Letters, 2014, 16, 692-695.	2.4	24
15	Organocatalytic Asymmetric Synthesis of Spiroâ€Tetrahydrothiophene Oxindoles Bearing Four Contiguous Stereocenters by Oneâ€Pot Michael–Henryâ€Cascade–Rearrangement Reactions. Chemistry - A European Journal, 2018, 24, 62-66.	1.7	24
16	Organocatalytic asymmetric synthesis of highly functionalized spiro-thiazolone–cyclopropane-oxindoles bearing two vicinal spiro quaternary centers. Organic Chemistry Frontiers, 2019, 6, 1442-1447.	2.3	19
17	Design, synthesis and biological evaluation of novel antitumor spirotetrahydrothiopyran–oxindole derivatives as potent p53-MDM2 inhibitors. Bioorganic and Medicinal Chemistry, 2017, 25, 5268-5277.	1.4	17
18	Design, synthesis and structure–activity relationships of new triazole derivatives containing N-substituted phenoxypropylamino side chains. European Journal of Medicinal Chemistry, 2012, 53, 292-299.	2.6	15

SHENGZHENG WANG

#	Article	IF	CITATIONS
19	Design, synthesis and biological evaluation of novel antitumor spirodihydrothiopyran-oxindole derivatives. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1636-1642.	1.0	15
20	Discovery of 1-arylpyrrolidone derivatives as potent p53–MDM2 inhibitors based on molecule fusing strategy. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2648-2650.	1.0	14
21	Structure–activity relationships of tetrahydrocarbazole derivatives as antifungal lead compounds. MedChemComm, 2013, 4, 353-362.	3.5	13
22	Discovery of novel tubulin inhibitors targeting the colchicine binding site via virtual screening, structural optimization and antitumor evaluation. Bioorganic Chemistry, 2022, 118, 105486.	2.0	11
23	Discovery of highly potent antifungal triazoles by structure-based lead fusion. MedChemComm, 2011, 2, 1066.	3.5	8
24	Facile construction of pyrrolo[1,2-b]isoquinolin-10(5H)-ones via a redox-amination–aromatization–Friedel–Crafts acylation cascade reaction and discovery of novel topoisomerase inhibitors. Chemical Communications, 2016, 52, 9593-9596.	2.2	8
25	Asymmetric Synthesis, Antifungal Activity and Molecular Modeling of Iodiconazole Isomers. Chinese Journal of Chemistry, 2013, 31, 1139-1143.	2.6	2
26	Antifungal Activity of Crude Extract from the Rhizome and Root of <i>Smilacina japonica</i> A. Gray. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-9.	0.5	1