
Gabriela Ambrozic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3536474/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Advances in the Synthesis of Five-Membered Cyclic Carbonates and Carbamates from Allylic or Propargylic Substrates and CO2. Catalysts, 2022, 12, 547.	3.5	2
2	In-situ multi-step pulsed vapor phase surface functionalization of zirconia nanoparticles via copper-free click chemistry. Applied Surface Science, 2021, 539, 148254.	6.1	6
3	Tailored BiVO4 for enhanced visible-light photocatalytic performance. Journal of Environmental Chemical Engineering, 2021, 9, 106025.	6.7	22
4	Building organosilica hybrid nanohemispheres via thiol-ene click reaction on alumina thin films deposited by atomic layer deposition (ALD). Journal of Colloid and Interface Science, 2020, 560, 303-311.	9.4	5
5	Secondary Metabolites from Gorgonian Corals of the Genus Eunicella: Structural Characterizations, Biological Activities, and Synthetic Approaches. Molecules, 2020, 25, 129.	3.8	7
6	Grain size effect on photocatalytic activity of TiO2 thin films grown by atomic layer deposition. Thin Solid Films, 2020, 709, 138215.	1.8	18
7	â€~Sandwich'-like hybrid ZnO thin films produced by a combination of atomic layer deposition and wet-chemistry using a mercapto silane as single organic precursor. Nanotechnology, 2020, 31, 185603.	2.6	9
8	Marine Natural Products with High Anticancer Activities. Current Medicinal Chemistry, 2020, 27, 1243-1307.	2.4	30
9	Introducing the concept of pulsed vapor phase copper-free surface click-chemistry using the ALD technique. Chemical Communications, 2019, 55, 3109-3112.	4.1	8
10	Chemical-Physical Characterization of a Binary Mixture Made of a Photosensitive Azobenzene Derivative and a Smectogen. Molecular Crystals and Liquid Crystals, 2015, 614, 54-61.	0.9	0
11	An antibacterial macroporous polyurethane hybrid material with a high content of zinc ions: A template to uniform ZnO nanoparticles. Materials Research Bulletin, 2013, 48, 1428-1434.	5.2	5
12	Optical properties of light-sensitive liquid-crystal elastomers in the vicinity of the nematic-paranematic phase transition. Physical Review E, 2013, 87, 022507.	2.1	9
13	Kinetics of Holographic Recording and Spontaneous Erasure Processes in Light-Sensitive Liquid Crystal Elastomers. Materials, 2012, 5, 741-753.	2.9	10
14	Nanocrystalline hybrid inorganic–organic one-dimensional chain systems tailored with 2- and 3-phenyl ring monocarboxylic acids. Journal of Materials Chemistry, 2012, 22, 10255.	6.7	5
15	Novel hybrid inorganic–organic one-dimensional chain systems tailored with monocarboxylic acids. Acta Crystallographica Section A: Foundations and Advances, 2012, 68, s226-s226.	0.3	0
16	The formation of zinc oxide nanoparticles from zinc acetylacetonate hydrate in tert-butanol: A comparative mechanistic study with isomeric C4 alcohols as the media. Materials Research Bulletin, 2011, 46, 2497-2501.	5.2	14
17	Poly(zinc dimethacrylate) as a precursor in the low-temperature formation of ZnO nanoparticles. Journal of Colloid and Interface Science, 2011, 360, 370-376.	9.4	7
18	Depth profile of optically recorded patterns in light-sensitive liquid-crystal elastomers. Physical Review F, 2011, 84, 031707	2.1	14

GABRIELA AMBROZIC

#	Article	IF	CITATIONS
19	The synthesis of zinc oxide nanoparticles from zinc acetylacetonate hydrate and 1-butanol or isobutanol. Journal of Colloid and Interface Science, 2010, 346, 317-323.	9.4	67
20	The double role of p-toluenesulfonic acid in the formation of ZnO particles with different morphologies. CrystEngComm, 2010, 12, 1862.	2.6	19
21	Interplay between nematic ordering and thermomechanical response in a side-chain liquid single crystal elastomer containing pendant azomesogen units. Polymer, 2009, 50, 4837-4844.	3.8	38
22	Micropatterning of light-sensitive liquid-crystal elastomers. Physical Review E, 2009, 80, 050701.	2.1	23
23	Hydrogen-bonded polyurethane complexes based on 4-alkoxybenzoic acids as the low molar mass components. Polymer International, 2005, 54, 606-613.	3.1	16
24	Hydrogen bonding in complex of serine with histidine: computational and spectroscopic study of model compounds. Chemical Physics Letters, 2004, 400, 117-121.	2.6	20
25	Density Functional Calculation of the 2D Potential Surface and Deuterium Isotope Effect on13C Chemical Shifts in Picolinic AcidN-Oxide. Comparison with Experiment. Journal of the American Chemical Society, 2004, 126, 4437-4443.	13.7	42
26	Liquid-Crystalline Complexes of Polyurethane Containing an Isonicotinamide Moiety with 4-Dodecyloxybenzoic Acid. Macromolecular Chemistry and Physics, 2002, 203, 439-447.	2.2	18
27	Aromatic side-chain liquid-crystalline polyurethanes with azobenzene mesogenic units. Polymer Bulletin, 2002, 48, 151-158.	3.3	2
28	Supramolecular liquid-crystalline polyurethane. Macromolecular Rapid Communications, 2000, 21, 53-56.	3.9	22
29	Strong intramolecular hydrogen bonds. Part I. Vibrational frequencies of the OH group in some picolinic acid N -oxides predicted from DFT calculated potentials and located in the infrared spectra. Computational and Theoretical Chemistry, 2000, 500, 429-440.	1.5	37