Long-Cheng Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3536337/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon, 2013, 60, 16-27.	5.4	954
2	Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon, 2014, 69, 467-480.	5.4	677
3	Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Composites Part A: Applied Science and Manufacturing, 2014, 64, 79-89.	3.8	525
4	Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process. Composites Science and Technology, 2013, 82, 60-68.	3.8	293
5	Efficient Flame Detection and Early Warning Sensors on Combustible Materials Using Hierarchical Graphene Oxide/Silicone Coatings. ACS Nano, 2018, 12, 416-424.	7.3	227
6	Toward effective and tunable interphases in graphene oxide/epoxy composites by grafting different chain lengths of polyetheramine onto graphene oxide. Journal of Materials Chemistry A, 2014, 2, 15058.	5.2	217
7	Facile synthesis of super-hydrophobic, electrically conductive and mechanically flexible functionalized graphene nanoribbon/polyurethane sponge for efficient oil/water separation at static and dynamic states. Chemical Engineering Journal, 2018, 334, 2154-2166.	6.6	207
8	Flexible, superhydrophobic and highly conductive composite based on non-woven polypropylene fabric for electromagnetic interference shielding. Chemical Engineering Journal, 2019, 364, 493-502.	6.6	200
9	Fracture behaviours of in situ silica nanoparticle-filled epoxy at different temperatures. Polymer, 2008, 49, 3816-3825.	1.8	192
10	A highly stretchable, super-hydrophobic strain sensor based on polydopamine and graphene reinforced nanofiber composite for human motion monitoring. Composites Part B: Engineering, 2020, 181, 107580.	5.9	182
11	Water-based hybrid coatings toward mechanically flexible, super-hydrophobic and flame-retardant polyurethane foam nanocomposites with high-efficiency and reliable fire alarm response. Composites Part B: Engineering, 2020, 193, 108017.	5.9	176
12	Fracture mechanisms of epoxy filled with ozone functionalized multi-wall carbon nanotubes. Composites Science and Technology, 2011, 72, 7-13.	3.8	175
13	Fracture mechanisms of epoxy-based ternary composites filled with rigid-soft particles. Composites Science and Technology, 2012, 72, 558-565.	3.8	165
14	Three-dimensional graphene-based polymer nanocomposites: preparation, properties and applications. Nanoscale, 2018, 10, 14788-14811.	2.8	162
15	Environmentally stable, mechanically flexible, self-adhesive, and electrically conductive Ti3C2TX MXene hydrogels for wide-temperature strain sensing. Nano Energy, 2021, 90, 106502.	8.2	159
16	Fracture toughness and electrical conductivity of epoxy composites filled with carbon nanotubes and spherical particles. Composites Part A: Applied Science and Manufacturing, 2013, 45, 95-101.	3.8	156
17	Facile and green fabrication of flame-retardant Ti3C2Tx MXene networks for ultrafast, reusable and weather-resistant fire warning. Chemical Engineering Journal, 2022, 427, 131615.	6.6	149
18	Silane grafted graphene oxide papers for improved flame resistance and fast fire alarm response. Composites Part B: Engineering, 2019, 168, 413-420.	5.9	135

#	Article	IF	CITATIONS
19	Temperature-responsive resistance sensitivity controlled by L-ascorbic acid and silane co-functionalization in flame-retardant GO network for efficient fire early-warning response. Chemical Engineering Journal, 2020, 386, 123894.	6.6	127
20	Creep and recovery of polystyrene composites filled with graphene additives. Composites Science and Technology, 2014, 91, 63-70.	3.8	123
21	Mechanically Durable, Highly Conductive, and Anticorrosive Composite Fabrics with Excellent Self-Cleaning Performance for High-Efficiency Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2019, 11, 10883-10894.	4.0	121
22	Facile and green synthesis of mechanically flexible and flame-retardant clay/graphene oxide nanoribbon interconnected networks for fire safety and prevention. Chemical Engineering Journal, 2021, 405, 126620.	6.6	116
23	Facile preparation of hybrid microspheres for super-hydrophobic coating and oil-water separation. Chemical Engineering Journal, 2017, 326, 443-453.	6.6	112
24	Construction of sandwich-like porous structure of graphene-coated foam composites for ultrasensitive and flexible pressure sensors. Nanoscale, 2019, 11, 10229-10238.	2.8	111
25	Temperature-triggered sensitive resistance transition of graphene oxide wide-ribbons wrapped sponge for fire ultrafast detecting and early warning. Journal of Hazardous Materials, 2019, 363, 286-294.	6.5	111
26	Balanced electrical, thermal and mechanical properties of epoxy composites filled with chemically reduced graphene oxide and rubber nanoparticles. Composites Science and Technology, 2015, 121, 104-114.	3.8	109
27	Temperature dependence of creep and recovery behaviors of polymer composites filled with chemically reduced graphene oxide. Composites Part A: Applied Science and Manufacturing, 2015, 69, 288-298.	3.8	103
28	Polymer grafted reduced graphene oxide sheets for improving stress transfer in polymer composites. Composites Science and Technology, 2016, 134, 144-152.	3.8	103
29	Smart fire-warning materials and sensors: Design principle, performances, and applications. Materials Science and Engineering Reports, 2022, 150, 100690.	14.8	91
30	Mechanically flexible, super-hydrophobic and flame-retardant hybrid nano-silica/graphene oxide wide ribbon decorated sponges for efficient oil/water separation and fire warning response. Composites Part A: Applied Science and Manufacturing, 2021, 140, 106191.	3.8	90
31	Influence of processing conditions on dispersion, electrical and mechanical properties of graphene-filled-silicone rubber composites. Composites Part A: Applied Science and Manufacturing, 2016, 91, 53-64.	3.8	89
32	Superhydrophobic and superelastic conductive rubber composite for wearable strain sensors with ultrahigh sensitivity and excellent anti-corrosion property. Journal of Materials Chemistry A, 2018, 6, 24523-24533.	5.2	89
33	Silicone/graphene oxide co-cross-linked aerogels with wide-temperature mechanical flexibility, super-hydrophobicity and flame resistance for exceptional thermal insulation and oil/water separation. Journal of Materials Science and Technology, 2022, 114, 131-142.	5.6	89
34	A novel and facile strategy for highly flame retardant polymer foam composite materials: Transforming silicone resin coating into silica self-extinguishing layer. Journal of Hazardous Materials, 2017, 336, 222-231.	6.5	87
35	Bamboo-inspired mechanically flexible and electrically conductive polydimethylsiloxane foam materials with designed hierarchical pore structures for ultra-sensitive and reliable piezoresistive pressure sensor. Composites Part B: Engineering, 2021, 225, 109243.	5.9	87
36	Mechanical properties and fracture behaviors of epoxy composites with multi-scale rubber particles. Materials Chemistry and Physics, 2013, 141, 333-342.	2.0	85

#	Article	IF	CITATIONS
37	Silane bonded graphene aerogels with tunable functionality and reversible compressibility. Carbon, 2016, 107, 573-582.	5.4	83
38	Efficient interfacial interaction for improving mechanical properties of polydimethylsiloxane nanocomposites filled with low content of graphene oxide nanoribbons. RSC Advances, 2017, 7, 22045-22053.	1.7	82
39	Design of mechanically stable, electrically conductive and highly hydrophobic three-dimensional graphene nanoribbon composites by modulating the interconnected network on polymer foam skeleton. Composites Science and Technology, 2019, 171, 162-170.	3.8	82
40	Manipulating interphase reactions for mechanically robust, flame-retardant and sustainable polylactide biocomposites. Composites Part B: Engineering, 2020, 190, 107930.	5.9	81
41	Bio-inspired, sustainable and mechanically robust graphene oxide-based hybrid networks for efficient fire protection and warning. Chemical Engineering Journal, 2022, 439, 134516.	6.6	81
42	Fire Intumescent, High-Temperature Resistant, Mechanically Flexible Graphene Oxide Network for Exceptional Fire Shielding and Ultra-Fast Fire Warning. Nano-Micro Letters, 2022, 14, 92.	14.4	79
43	<i>In situ</i> reactive self-assembly of a graphene oxide nano-coating in polymer foam materials with synergistic fire shielding properties. Journal of Materials Chemistry A, 2019, 7, 27032-27040.	5.2	78
44	One-step and green synthesis of lightweight, mechanically flexible and flame-retardant polydimethylsiloxane foam nanocomposites via surface-assembling ultralow content of graphene derivative. Chemical Engineering Journal, 2020, 393, 124724.	6.6	78
45	Ultrafast Flame-Induced Pyrolysis of Poly(dimethylsiloxane) Foam Materials toward Exceptional Superhydrophobic Surfaces and Reliable Mechanical Robustness. ACS Applied Materials & Interfaces, 2021, 13, 23161-23172.	4.0	78
46	Processing, thermal conductivity and flame retardant properties of silicone rubber filled with different geometries of thermally conductive fillers: A comparative study. Composites Part B: Engineering, 2022, 238, 109907.	5.9	76
47	Simultaneous improvements in fire resistance and alarm response of GO paper via one-step 3-mercaptopropyltrimethoxysilane functionalization for efficient fire safety and prevention. Composites Part A: Applied Science and Manufacturing, 2020, 131, 105797.	3.8	72
48	A novel failure analysis of multi-walled carbon nanotubes in epoxy matrix. Polymer, 2011, 52, 2070-2074.	1.8	71
49	A Durable, Flexible, Largeâ€Area, Flameâ€Retardant, Early Fire Warning Sensor with Builtâ€In Patterned Electrodes. Small Methods, 2021, 5, e2001040.	4.6	67
50	Self-Derived Superhydrophobic and Multifunctional Polymer Sponge Composite with Excellent Joule Heating and Photothermal Performance for Strain/Pressure Sensors. ACS Applied Materials & Interfaces, 2020, 12, 13316-13326.	4.0	66
51	Enhanced mechanical property and flame resistance of graphene oxide nanocomposite paper modified with functionalized silica nanoparticles. Composites Part B: Engineering, 2019, 177, 107347.	5.9	61
52	Wear-resistant and transparent acrylate-based coating with highly filled nanosilica particles. Tribology International, 2010, 43, 83-91.	3.0	57
53	Chitosan in-situ grafted magnetite nanoparticles toward mechanically robust and electrically conductive ionic-covalent nanocomposite hydrogels with sensitive strain-responsive resistance. Composites Science and Technology, 2020, 195, 108173.	3.8	55
54	A highly fire-retardant rigid polyurethane foam capable of fire-warning. Composites Communications, 2022, 29, 101046.	3.3	54

4

#	Article	IF	CITATIONS
55	Constructing dual ionically cross-linked poly(acrylamide-co-acrylic acid) /chitosan hydrogel materials embedded with chitosan decorated halloysite nanotubes for exceptional mechanical performance. Composites Part B: Engineering, 2020, 194, 108046.	5.9	53
56	Temperature-induced resistance transition behaviors of melamine sponge composites wrapped with different graphene oxide derivatives. Journal of Materials Science and Technology, 2021, 85, 194-204.	5.6	52
57	Fracture Behaviors of TRGO-Filled Epoxy Nanocomposites with Different Dispersion/Interface Levels. Macromolecular Materials and Engineering, 2015, 300, 737-749.	1.7	46
58	Performance of epoxy filled with nano- and micro-sized Magnesium hydroxide. Journal of Materials Science, 2012, 47, 1480-1488.	1.7	43
59	Mechanical properties and fracture behaviors of epoxy composites with phase-separation formed liquid rubber and preformed powdered rubber nanoparticles: A comparative study. Polymer Composites, 2015, 36, 785-799.	2.3	43
60	Single carbon fiber fracture embedded in an epoxy matrix modified by nanoparticles. Composites Science and Technology, 2013, 77, 101-109.	3.8	41
61	Enhanced mechanical properties of polyacrylamide/chitosan hydrogels by tuning the molecular structure of hyperbranched polysiloxane. Materials and Design, 2019, 162, 162-170.	3.3	41
62	A review of nanofiber membranes for solar interface evaporation. Desalination, 2022, 531, 115686.	4.0	38
63	Comparative study on the optical, surface mechanical and wear resistant properties of transparent coatings filled with pyrogenic and colloidal silica nanoparticles. Composites Science and Technology, 2011, 71, 471-479.	3.8	31
64	Mechanical Properties of Rubber Nanocomposites Containing Carbon Nanofillers. , 2019, , 367-423.		31
65	Dielectric Properties of Carbon Nanotubes/Epoxy Composites. Journal of Nanoscience and Nanotechnology, 2013, 13, 964-969.	0.9	28
66	A polyphosphoramide-grafted lignin enabled thermostable and fire-retardant polylactide with preserved mechanical properties. Composites Part A: Applied Science and Manufacturing, 2022, 160, 107028.	3.8	28
67	Improved interfacial properties between glass fibers and tetra-functional epoxy resins modified with silica nanoparticles. Fibers and Polymers, 2015, 16, 2056-2065.	1.1	24
68	An insulating second filler tuning porous conductive composites for highly sensitive and fast responsive organic vapor sensor. Sensors and Actuators B: Chemical, 2019, 285, 254-263.	4.0	23
69	Mechanically Robust Polyacrylamide Composite Hydrogel Achieved by Integrating Lamellar Montmorillonite and Chitosan Microcrystalline Structure into Covalently Cross-linked Network. ACS Applied Polymer Materials, 2020, 2, 1874-1885.	2.0	21
70	Emulsion dipping based superhydrophobic, temperature tolerant, and multifunctional coatings for smart strain sensing applications. Composites Science and Technology, 2021, 216, 109045.	3.8	21
71	Scalable preparation of multiscale carbon nanotube/glass fiber reinforcements and their application in polymer composites. Fibers and Polymers, 2014, 15, 1242-1250.	1.1	20
72	Self-healing High-performance dielectric elastomer actuator with novel Liquid-solid interpenetrating structure. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106519.	3.8	20

#	Article	IF	CITATIONS
73	The Effects of Alumina Nanofillers on Mechanical Properties of High-Performance Epoxy Resin. Journal of Nanoscience and Nanotechnology, 2010, 10, 7526-7532.	0.9	19
74	7 Graphene/Polymer Composite Materials: Processing, Properties and Applications. , 2017, , 349-419.		19
75	Green and Rapid Preparation of Fluorosilicone Rubber Foam Materials with Tunable Chemical Resistance for Efficient Oil–Water Separation. Polymers, 2022, 14, 1628.	2.0	18
76	Exceptionally flame-retardant flexible polyurethane foam composites: synergistic effect of the silicone resin/graphene oxide coating. Frontiers of Chemical Science and Engineering, 2021, 15, 969-983.	2.3	14
77	Stable electrically conductive, highly flame-retardant foam composites generated from reduced graphene oxide and silicone resin coatings. Soft Matter, 2021, 17, 68-82.	1.2	13
78	Superhydrophobic, biocompatible and durable nanofiber composite with an asymmetric structure for anisotropic strain sensing and body motion detection. Chemical Engineering Journal, 2022, 450, 137899.	6.6	13
79	Rheological behaviors of fumed silica/low molecular weight hydroxyl silicone oil. Journal of Applied Polymer Science, 2014, 131, .	1.3	12
80	Fabrication and characterisation of hydrophobic magnetite composite nanoparticles for oil/water separation. Materials Technology, 2016, 31, 38-43.	1.5	9
81	Facile Fabrication of Graphene Oxide Nanoribbon-Based Nanocomposite Papers with Different Oxidation Degrees and Morphologies for Tunable Fire-Warning Response. Nanomaterials, 2022, 12, 1963.	1.9	7
82	Fabrication and properties of chemically bonded polysilsesquioxaneâ€polyacrylate/silica hybrid latex films with high silicon content. Polymer Composites, 2015, 36, 389-396.	2.3	6
83	Superhydrophobic and Superparamagnetic Composite Coatings: A Comparative Study on Dual-Sized Functional Magnetite Nanoparticles/Silicone Rubber. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 1816-1825.	1.9	6
84	Fabrication and characterization of chemically bonded polysilsesquioxane-polyacrylate hybrid latex particles. Composite Interfaces, 2014, 21, 455-465.	1.3	4
85	Halogenâ€free intumescent flame retardancy and mechanical properties of the microcellular polypropylene with low expansion ratio via continuous extrusion assisted by subcritical CO 2. Journal of Applied Polymer Science, 0, , 51971.	1.3	2
86	Study on the Foaming Behaviors of PBS and Its Modification with PA6IcoT Assisted by scCO ₂ . Advanced Engineering Materials, 2022, 24, .	1.6	1
87	Back Cover: A Durable, Flexible, Largeâ€Area, Flameâ€Retardant, Early Fire Warning Sensor with Builtâ€In Patterned Electrodes (Small Methods 4/2021). Small Methods, 2021, 5, 2170016. 	4.6	0
88	Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix. , 2021, , 1-35.		0