Yaoqiang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3536263/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports. Nature Communications, 2020, 11, 3908.	5.8	172
2	Pd or PdO: Catalytic active site of methane oxidation operated close to stoichiometric air-to-fuel for natural gas vehicles. Applied Catalysis B: Environmental, 2017, 219, 73-81.	10.8	88
3	Particle Size Effects in Stoichiometric Methane Combustion: Structure–Activity Relationship of Pd Catalyst Supported on Gamma-Alumina. ACS Catalysis, 2020, 10, 10339-10349.	5.5	84
4	Phase transformation and oxygen vacancies in Pd/ZrO2 for complete methane oxidation under lean conditions. Journal of Catalysis, 2019, 377, 565-576.	3.1	72
5	Preparation of ceria–zirconia by modified coprecipitation method and its supported Pd-only three-way catalyst. Journal of Colloid and Interface Science, 2015, 450, 404-416.	5.0	65
6	A study on H 2 -TPR of Pt/Ce 0.27 Zr 0.73 O 2 and Pt/Ce 0.27 Zr 0.70 La 0.03 O x for soot oxidation. Applied Surface Science, 2016, 377, 48-55.	3.1	59
7	New insights into the role of Pd-Ce interface for methane activation on monolithic supported Pd catalysts: A step forward the development of novel PGM Three-Way Catalysts for natural gas fueled engines. Applied Catalysis B: Environmental, 2020, 264, 118475.	10.8	59
8	Promotion of catalytic performance by adding W into Pt/ZrO2 catalyst for selective catalytic oxidation of ammonia. Applied Surface Science, 2017, 402, 323-329.	3.1	56
9	Preparation and property investigation of CeO2–ZrO2–Al2O3 oxygen-storage compounds. Journal of Alloys and Compounds, 2008, 455, 322-326.	2.8	53
10	New insights into the structure of a CeO ₂ –ZrO ₂ –Al ₂ O ₃ composite and its influence on the performance of the supported Pd-only three-way catalyst. Catalysis Science and Technology, 2015, 5, 4488-4500.	2.1	51
11	Design and Synthesis of Highly-Dispersed WO ₃ Catalyst with Highly Effective NH ₃ –SCR Activity for NO _{<i>x</i>Abatement. ACS Catalysis, 2019, 9, 11557-11562.}	5.5	50
12	Effects of contact model and NO x on soot oxidation activity over Pt/MnO x -CeO 2 and the reaction mechanisms. Chemical Engineering Journal, 2017, 327, 1066-1076.	6.6	49
13	Structure, surface and reactivity of activated carbon: From model soot to Bio Diesel soot. Fuel, 2019, 257, 116038.	3.4	49
14	Effect of yttria in Pt/TiO ₂ on sulfur resistance diesel oxidation catalysts: enhancement of low-temperature activity and stability. Catalysis Science and Technology, 2014, 4, 3032-3043.	2.1	46
15	Size-dependent CO and propylene oxidation activities of platinum nanoparticles on the monolithic Pt/TiO ₂ –YO _x diesel oxidation catalyst under simulative diesel exhaust conditions. Catalysis Science and Technology, 2015, 5, 2358-2365.	2.1	45
16	Effectively promote catalytic performance by adjusting W/Fe molar ratio of FeWx/Ce0.68Zr0.32O2 monolithic catalyst for NH3-SCR. Journal of Industrial and Engineering Chemistry, 2016, 36, 334-345.	2.9	45
17	Promotion of catalytic performance by adding Cu into Pt/ZSM-5 catalyst for selective catalytic oxidation of ammonia. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78, 401-408.	2.7	44
18	Cerium promotion on the hydrocarbon resistance of a Cu-SAPO-34 NH ₃ -SCR monolith catalyst. Catalysis Science and Technology, 2015, 5, 4511-4521.	2.1	43

#	Article	IF	CITATIONS
19	MnOx-CeO2 mixed oxides as the catalyst for NO-assisted soot oxidation: The key role of NO adsorption/desorption on catalytic activity. Applied Surface Science, 2018, 462, 678-684.	3.1	43
20	Optimizing acid promoters of Ce-based NH3-SCR catalysts for reducing NOx emissions. Catalysis Today, 2021, 382, 34-41.	2.2	43
21	The effect of synthesis method on the properties and catalytic performance of Pd/Ce 0.5 Zr 0.5 O 2 -Al 2 O 3 three-way catalyst. Journal of Molecular Catalysis A, 2014, 394, 10-21.	4.8	40
22	Promotion of CeO2–ZrO2–Al2O3 composite by selective doping with barium and its supported Pd-only three-way catalyst. Journal of Molecular Catalysis A, 2015, 410, 100-109.	4.8	40
23	Enhancement of activity and hydrothermal stability of Pd/ZrO 2 -Al 2 O 3 doped by Mg for methane combustion under lean conditions. Fuel, 2017, 194, 368-374.	3.4	40
24	Enhancement effect of oxygen mobility over Ce0.5Zr0.5O2 catalysts doped by multivalent metal oxides for soot combustion. Fuel, 2021, 286, 119359.	3.4	40
25	Effect of Y on improving the thermal stability of MnOx-CeO2 catalysts for diesel soot oxidation. Chinese Journal of Catalysis, 2015, 36, 1333-1341.	6.9	33
26	Promotional effects of Titanium additive on the surface properties, active sites and catalytic activity of W/CeZrOx monolithic catalyst for the selective catalytic reduction of NOx with NH3. Applied Surface Science, 2017, 419, 697-707.	3.1	32
27	Synthesis and study of nanostructured Ce-Zr-La-RE-O (RE = Y, Nd and Pr) quaternary solid solutions and their supported three-way catalysts. Materials and Design, 2017, 130, 149-156.	3.3	31
28	Promotional effect of Al2O3 on WO3/CeO2-ZrO2 monolithic catalyst for selective catalytic reduction of nitrogen oxides with ammonia after hydrothermal aging treatment. Applied Surface Science, 2018, 427, 656-669.	3.1	31
29	The influence of precipitation temperature on the properties of ceria–zirconia solid solution composites. Journal of Alloys and Compounds, 2015, 628, 213-221.	2.8	30
30	The promotion effect of tungsten on monolith Pt/Ce _{0.65} Zr _{0.35} O ₂ catalysts for the catalytic oxidation of toluene. New Journal of Chemistry, 2019, 43, 5719-5726.	1.4	30
31	Toluene oxidation over monolithic MnOx/La-Al2O3 catalyst prepared by a CTAB-assisted impregnation method. Applied Surface Science, 2020, 526, 146714.	3.1	30
32	A new understanding of CeO2-ZrO2 catalysts calcinated at different temperatures: Reduction property and soot-O2 reaction. Applied Catalysis A: General, 2018, 563, 204-215.	2.2	29
33	Preparation of nanostructured CeO2-ZrO2-based materials with stabilized surface area and their catalysis in soot oxidation. Applied Surface Science, 2020, 505, 144301.	3.1	29
34	Carbon-resistant NiO-Y2O3-nanostructured catalysts derived from double-layered hydroxides for dry reforming of methane. Catalysis Today, 2021, 366, 103-113.	2.2	29
35	Kerosene cracking over supported monolithic Pt catalysts: Effects of SrO and BaO promoters. Chinese Journal of Catalysis, 2013, 34, 1139-1147.	6.9	27
36	Effects of Nd on the properties of CeO2–ZrO2 and catalytic activities of three-way catalysts with low Pt and Rh. Journal of Alloys and Compounds, 2015, 621, 104-115.	2.8	27

#	Article	IF	CITATIONS
37	Promotional effect of lanthana on the high-temperature thermal stability of Pt/TiO ₂ sulfur-resistant diesel oxidation catalysts. RSC Advances, 2017, 7, 19318-19329.	1.7	27
38	Neodymium promotion on the low-temperature hydrothermal stability of a Cu/SAPO-34 NH 3 -SCR monolith catalyst. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 805-812.	2.7	27
39	Active oxygen-promoted NO catalytic on monolithic Pt-based diesel oxidation catalyst modified with Ce. Catalysis Today, 2019, 327, 64-72.	2.2	27
40	Effect of the calcination temperature of cerium–zirconium mixed oxides on the structure and catalytic performance of WO ₃ /CeZrO ₂ monolithic catalyst for selective catalytic reduction of NO _x with NH ₃ . RSC Advances, 2017, 7, 24177-24187.	1.7	26
41	A simple and effective method to synthesize Pt/CeO2 three-way catalysts with high activity and hydrothermal stability. Journal of Environmental Chemical Engineering, 2020, 8, 104236.	3.3	26
42	Designed synthesis and characterization of nanostructured ceria-zirconia based material with enhanced thermal stability and its application in three-way catalysis. Journal of Industrial and Engineering Chemistry, 2018, 64, 219-229.	2.9	25
43	(C2H8N)2[Be3(HPO3)4]: a low-density beryllium phosphite with large 16-membered rings and helical channels. CrystEngComm, 2011, 13, 3646.	1.3	24
44	Sulfur deactivation mechanism of Pt/MnOx-CeO2 for soot oxidation: Surface property study. Applied Surface Science, 2017, 396, 560-565.	3.1	24
45	Interactional effect of cerium and manganese on NO catalytic oxidation. Environmental Science and Pollution Research, 2017, 24, 9314-9324.	2.7	24
46	Catalytic Cracking of RP-3 Jet Fuel over Pt/CeO ₂ –Al ₂ O ₃ by Adding Cu/ZSM-5. Energy & Fuels, 2014, 28, 5382-5388.	2.5	23
47	Effect of Si islands on low-temperature hydrothermal stability of Cu/SAPO-34 catalyst for NH 3 -SCR. Journal of the Taiwan Institute of Chemical Engineers, 2017, 81, 288-294.	2.7	23
48	Effect of valence state and particle size on NO oxidation in fresh and aged Pt-based diesel oxidation catalysts. Applied Surface Science, 2018, 443, 336-344.	3.1	23
49	Promotional effects of ethylenediamine on the low-temperature catalytic activity of selective catalytic oxidation of ammonia over Pt/SiAlOx: States and particle sizes of Pt. Applied Surface Science, 2019, 481, 1344-1351.	3.1	23
50	Oxidation of methane to methanol over Pd@Pt nanoparticles under mild conditions in water. Catalysis Science and Technology, 2021, 11, 3493-3500.	2.1	23
51	Novel Cu-Based CHA/AFI Hybrid Crystal Structure Catalysts Synthesized for NH ₃ -SCR. Industrial & Engineering Chemistry Research, 2019, 58, 18046-18054.	1.8	22
52	Enhanced activity and stability of the monolithic Pt/SiO2–Al2O3 diesel oxidation catalyst promoted by suitable tungsten additive amount. Journal of Industrial and Engineering Chemistry, 2017, 54, 359-368.	2.9	20
53	Hydrothermal deactivation over CuFe/BEA for NH3-SCR. Journal of Industrial and Engineering Chemistry, 2018, 65, 40-50.	2.9	20
54	Preparation of a monolith MnO _x –CeO ₂ /La–Al ₂ O ₃ catalyst and its properties for catalytic oxidation of toluene. New Journal of Chemistry, 2018, 42, 16875-16885.	1.4	20

#	Article	IF	CITATIONS
55	Soot oxidation over CeO2-ZrO2 based catalysts: The influence of external surface and low-temperature reducibility. Molecular Catalysis, 2019, 467, 16-23.	1.0	20
56	Grain size effect on the high-temperature hydrothermal stability of Cu/SAPO-34 catalysts for NH3-SCR. Journal of Environmental Chemical Engineering, 2020, 8, 104559.	3.3	20
57	Solvent Effects on the Low-Temperature NH ₃ –SCR Activity and Hydrothermal Stability of WO ₃ /SiO ₂ @CeZrO _{<i>x</i>} Catalyst. ACS Sustainable Chemistry and Engineering, 2020, 8, 13418-13429.	3.2	20
58	Effect of high temperature pretreatment on the thermal resistance properties of Pd/CeO2/Al2O3 close-coupled catalysts. Journal of Rare Earths, 2017, 35, 149-157.	2.5	19
59	Advanced Insight into the Size Effect of PtPd Nanoparticles on NO Oxidation by <i>in Situ</i> FTIR Spectra. Industrial & Engineering Chemistry Research, 2018, 57, 3887-3897.	1.8	19
60	P promotion on the performance of Pd-based catalyst for emission control of natural gas driven vehicles. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 323-331.	2.7	19
61	Enhancement of the Hydrothermal Stability of WO ₃ /Ce _{0.68} Zr _{0.32} O ₂ Catalyst by Silica Modification for NH ₃ -SCR. ACS Applied Energy Materials, 2020, 3, 1161-1170.	2.5	19
62	Role of acidity in catalytic cracking of n-decane over supported Pt-based catalysts. Applied Surface Science, 2020, 507, 145113.	3.1	18
63	The influence of H2O2 on the properties of CeO2-ZrO2 mixed oxides. Journal of Materials Science, 2017, 52, 5242-5255.	1.7	17
64	Effect of cobalt oxide on performance of Pd catalysts for lean-burn natural gas vehicles in the presence and absence of water vapor. Journal of Natural Gas Chemistry, 2010, 19, 134-138.	1.8	16
65	Pd catalyst supported on ZrO ₂ â€Al ₂ O ₃ by doubleâ€solvent method for methane oxidation under lean conditions. Canadian Journal of Chemical Engineering, 2017, 95, 1117-1123.	0.9	16
66	Study on hydrothermal deactivation of Pt/MnO x -CeO2 for NO x -assisted soot oxidation: redox property, surface nitrates, and oxygen vacancies. Environmental Science and Pollution Research, 2018, 25, 16061-16070.	2.7	16
67	New Insights into Excellent Catalytic Performance of the Ce-Modified Catalyst for NO Oxidation. Industrial & Engineering Chemistry Research, 2019, 58, 7876-7885.	1.8	16
68	Excellent complete conversion activity for methane and CO of Pd/TiO2-Zr0.5Al0.5O1.75 catalyst used in lean-burn natural gas vehicles. Journal of Energy Chemistry, 2014, 23, 461-467.	7.1	15
69	Modification of the thermal stability of doped CeO2–ZrO2 mixed oxides with the addition of triethylamine and its application as a Pd-only three-way catalyst. Journal of Materials Science, 2016, 51, 4283-4295.	1.7	15
70	Designed synthesis of highly active CeO2-ZrO2-Al2O3 support materials with optimized surface property for Pd-only three-way catalysts. Applied Surface Science, 2020, 506, 144866.	3.1	15
71	Synthesis of a High-Stability Nanosized Pt-Loaded MgAl ₂ O ₄ Catalyst for <i>n</i> -Decane Cracking with Enhanced Activity and Durability. Industrial & Engineering Chemistry Research, 2020, 59, 4338-4347.	1.8	15
72	Development of a thermally stable Pt catalyst by redispersion between CeO ₂ and Al ₂ O ₃ . RSC Advances, 2021, 11, 7015-7024.	1.7	15

#	Article	IF	CITATIONS
73	Catalytic performance of a Pt-Rh/CeO 2 -ZrO 2 -La 2 O 3 -Nd 2 O 3 three-way compress nature gas catalyst prepared by a modified double-solvent method. Journal of Rare Earths, 2017, 35, 857-866.	2.5	14
74	Effect of MOx (M = Ce, Ni, Co, Mg) on activity and hydrothermal stability of Pd supported on ZrO2–Al2O3 composite for methane lean combustion. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85, 176-185.	2.7	14
75	Evolution of Pd Species for the Conversion of Methane under Operation Conditions. Industrial & Engineering Chemistry Research, 2019, 58, 6255-6265.	1.8	14
76	Enhanced activity and hydrothermal stability of Rh-based three-way catalyst for emission control from motorcycles with the assistance of monoethanolamine. Journal of Industrial and Engineering Chemistry, 2019, 71, 127-136.	2.9	14
77	Promotional effects of ascorbic acid on the low-temperature catalytic activity of selective catalytic oxidation of ammonia over Pt/SA: effect of Pt ⁰ content. New Journal of Chemistry, 2020, 44, 4108-4113.	1.4	14
78	Comprehensive effect of tuning Cu/SAPO-34 crystals using PEG on the enhanced hydrothermal stability for NH ₃ -SCR. Catalysis Science and Technology, 2021, 11, 7640-7651.	2.1	13
79	Pd catalysts supported on modified Zr05Al05O1.75 used for lean-burn natural gas vehicles exhaust purification. Journal of Natural Gas Chemistry, 2012, 21, 393-399.	1.8	12
80	Catalytic performance of Pt–Rh/CeZrYLa+LaAl with stoichiometric natural gas vehicles emissions. Chinese Journal of Catalysis, 2015, 36, 290-298.	6.9	12
81	Preparation of CeO2–ZrO2–Al2O3 composite with layered structure for improved Pd-only three-way catalyst. Journal of Materials Science, 2017, 52, 9615-9629.	1.7	12
82	Designed synthesis of semi-embedded Pd over CeO2-ZrO2/Al2O3 as advanced three-way catalyst. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85, 98-105.	2.7	12
83	Promotion of yttrium (Y) on the water resistance and hydrothermal stability of Pd/ZrO2 catalyst coated on the monolith for complete methane oxidation. Journal of the Taiwan Institute of Chemical Engineers, 2019, 103, 44-56.	2.7	12
84	Investigation of the selective catalytic reduction of NO with NH ₃ over the WO ₃ /Ce _{0.68} Zr _{0.32} O ₂ catalyst: the role of H ₂ O in SO ₂ inhibition. New Journal of Chemistry, 2019, 43, 2258-2268.	1.4	12
85	Factors determining gasoline soot abatement over CeO2–ZrO2-MnO catalysts under low oxygen concentration condition. Journal of the Energy Institute, 2020, 93, 774-783.	2.7	12
86	The influence of molar ratios of Ce/Zr on the selective catalytic reduction of NO x with NH3 over Fe2O3-WO3/Ce x Zr1â^'x O2 (0Ââ‰ÂxÂâ‰Â1) monolith catalyst. Science Bulletin, 2014, 59, 3956-3965.	1.7	11
87	Effects of ZnO content on the performance of Pd/Zr0.5Al0.5O1.75 catalysts used in lean-burn natural gas vehicles. Chinese Journal of Catalysis, 2014, 35, 1157-1165.	6.9	11
88	Promotion of a Pd/Al2O3 close-coupled catalyst by Ni. Chinese Journal of Catalysis, 2015, 36, 994-1000.	6.9	11
89	Effect of surface tension on the properties of a doped CeO2–ZrO2composite and its application in a Pd-only three-way catalyst. RSC Advances, 2016, 6, 66524-66536.	1.7	11
90	Remarkably promoted low-temperature reducibility and thermal stability of CeO2–ZrO2–La2O3–Nd2O3 by a urea-assisted low-temperature (90°C) hydrothermal procedure. Journal of Materials Science, 2017, 52, 5894-5907.	1.7	11

#	Article	IF	CITATIONS
91	Soot combustion over CeO2 catalyst: the influence of biodiesel impurities (Na, K, Ca, P) on surface chemical properties. Environmental Science and Pollution Research, 2021, 28, 26018-26029.	2.7	11
92	Facile fabrication of novel Eu ontaining copolymer and luminescent properties. Polymer Engineering and Science, 2009, 49, 1273-1278.	1.5	10
93	Effect of Zirconium Precursor on Performance of Pd/Ce0.45Zr0.45La0.101.95 Three-Way Catalyst. Chinese Journal of Catalysis, 2012, 33, 1762-1771.	6.9	10
94	The performance of Pt/ZrxTixAl1–2xO2 as Kerosene cracking catalysts. Chinese Journal of Catalysis, 2014, 35, 175-184.	6.9	10
95	A highly efficient Rh-modified Pd/Al2O3 close-coupled catalyst. Chinese Journal of Catalysis, 2015, 36, 229-236.	6.9	10
96	The effective promotion of trace amount of Cu on Ce/WO ₃ â€ZrO ₂ â€TiO ₂ monolithic catalyst for the lowâ€ŧemperature NH ₃ â€SCR of NO <i>_x</i> . Canadian Journal of Chemical Engineering, 2018, 96, 1168-1175	0.9	10
97	Insight into Enhancement of NO Reduction with Methane by Multifunctional Catalysis over a Mixture of Ce/HZSM-5 and CoO _{<i>x</i>} in Excess of Oxygen. Industrial & amp; Engineering Chemistry Research, 2018, 57, 13312-13317.	1.8	10
98	Different thermal behavior of nanostructured CeO2-ZrO2 based oxides with varied Ce/Zr molar ratios. Materials Chemistry and Physics, 2019, 236, 121767.	2.0	10
99	Effect of the loading sequence of CeO2 and Pd over Al2O3 on the catalytic performance of Pd-only close-coupled catalysts. Molecular Catalysis, 2020, 482, 100332.	1.0	10
100	Comparative activity and hydrothermal stability of FeOx- and CeO2-doped Pt-based catalysts for eliminating diesel emissions. Journal of Environmental Chemical Engineering, 2020, 8, 104361.	3.3	10
101	Pd Supported on Alumina Using CePO ₄ as an Additive: Phosphorus-Resistant Catalyst for Emission Control in Vehicles Fueled by Natural Gas. Industrial & Engineering Chemistry Research, 2020, 59, 6497-6505.	1.8	10
102	Openâ€Framework Beryllium Phosphites with Layered Structures. European Journal of Inorganic Chemistry, 2011, 2011, 4949-4953.	1.0	9
103	New insight into the microstructure–thermal stability relationships in ceria-zirconia solid solution and the application in Pd-only three-way catalyst. Journal of Industrial and Engineering Chemistry, 2018, 60, 102-113.	2.9	9
104	Methane Combustion with a Pd–Pt Catalyst Stabilized by Magnesia–Alumina Spinel in a High-Humidity Feed. Industrial & Engineering Chemistry Research, 2020, 59, 11170-11176.	1.8	9
105	Enhanced performance of a Pt-based three-way catalyst using a double-solvent method. RSC Advances, 2016, 6, 40366-40370.	1.7	8
106	Designed synthesis of nanostructured Al2O3 stabilized homogeneous CeO2-ZrO2 solid solution as highly active support for Pd-only three-way catalyst. Molecular Catalysis, 2019, 477, 110513.	1.0	8
107	Optimally designed synthesis of advanced Pdâ€Rh bimetallic threeâ€way catalyst. Canadian Journal of Chemical Engineering, 2019, 97, 2516-2526.	0.9	8
108	A novel insight into the preparation method of Pd/Ce0.75Zr0.25O2-Al2O3 over high-stability close coupled catalysts. Applied Surface Science, 2019, 467-468, 723-739.	3.1	8

#	Article	IF	CITATIONS
109	Pd supported on alumina modified by phosphate: Highly phosphorus-resistant three-way catalyst for natural gas vehicles. Journal of the Taiwan Institute of Chemical Engineers, 2020, 115, 108-116.	2.7	8
110	Effect of a mixed precursor over monolith MnO _x /La–Al ₂ O ₃ catalyst for toluene oxidation. New Journal of Chemistry, 2020, 44, 10859-10869.	1.4	8
111	Constructing a Pt/YMn ₂ O ₅ Interface to Form Multiple Active Centers to Improve the Hydrothermal Stability of NO Oxidation. ACS Applied Materials & Interfaces, 2022, 14, 20875-20887.	4.0	8
112	A novel diesel oxidation catalyst with low SO2 oxidation activity and capable of meeting Euro V emission standards. Chinese Journal of Catalysis, 2013, 34, 667-673.	6.9	7
113	The regulation of reaction processes and rate-limiting steps for efficient photocatalytic CO ₂ reduction into methane over the tailored facets of TiO ₂ . Catalysis Science and Technology, 2019, 9, 1451-1456.	2.1	7
114	Preparation of Ce0.5Zr0.5O2–Al2O3 with high-temperature sintering resistance and its supported Pd-only three-way catalyst. Journal of Materials Science, 2019, 54, 2796-2813.	1.7	7
115	Bifunctional roles of Nd2O3 on improving the redox property of CeO2–ZrO2–Al2O3 materials. Materials Chemistry and Physics, 2020, 240, 122150.	2.0	7
116	Insights into the role of Pt on Pd catalyst stabilized by magnesia-alumina spinel on gama-alumina for lean methane combustion: Enhancement of hydrothermal stability. Molecular Catalysis, 2020, 496, 111185.	1.0	7
117	Catalytic performance promoted on Pt-based diesel oxidation catalyst assisted by polyvinyl alcohol. Environmental Science and Pollution Research, 2020, 27, 41824-41838.	2.7	7
118	Improved low-temperature catalytic oxidation performance of Pt-based catalysts by modulating the electronic and size effects. New Journal of Chemistry, 2020, 44, 10500-10506.	1.4	7
119	Effect of lauric acid on the grain growth of CeO2-ZrO2-Y2O3-La2O3 in different periods. Journal of Alloys and Compounds, 2022, 894, 162301.	2.8	7
120	Synthesis of Yâ€shaped poly(<i>N</i> , <i>N</i> â€dimethylaminoâ€2â€ethyl methacrylate) and poly(trimethylene)	Ţį ĘTQqC) 0 ₆ 0 rgBT /C
121	Optimization of Hybrid Crystal with SAPO-5/34 on Hydrothermal Stability for deNOx Reaction by NH3. Chemical Research in Chinese Universities, 2020, 36, 1249-1254.	1.3	6
122	CeO2–ZrO2–Al2O3 Modified by Selective Doping with SrO for Improved Pd-Only Three-Way Catalyst. Russian Journal of Physical Chemistry A, 2018, 92, 696-705.	0.1	5
123	Tuning the interactions among Ce, Pd and Rh over Ce-modified Pd-Rh three-way catalyst for exhaust treatment of natural gas vehicles. Journal of Environmental Chemical Engineering, 2021, 9, 105570.	3.3	5
124	Efficient monolithic MnOx catalyst prepared by heat treatment for ozone decomposition. Environmental Science and Pollution Research, 2022, 29, 44324-44334.	2.7	5
125	Key role of NO + C3H8 reaction for the elimination of NO in automobile exhaust by three-way catalyst. Environmental Science and Pollution Research, 2019, 26, 26071-26081.	2.7	4
126	Pd-based Catalysts by Colloid Synthesis Using Different Reducing Reagents for Complete Oxidation of Methane. Catalysis Letters, 2019, 149, 2098-2103.	1.4	4

#	Article	IF	CITATIONS
127	The promotion effects of TiO 2 on the selective catalytic reduction of NO x with NH 3 over ceo 2 â€WO 3 /ZrO 2 : The catalytic performance and reaction route. Canadian Journal of Chemical Engineering, 2019, 97, 1274-1282.	0.9	4
128	Fabricate surface structure-stabilized Cu/BEA with hydrothermal-resistant via si-deposition for NOx abatement. Molecular Catalysis, 2020, 495, 111153.	1.0	4
129	Correlation between the morphology of NH4Al(OH)2CO3 and the properties of CeO2–ZrO2/Al2O3 material. Materials Chemistry and Physics, 2021, 266, 124552.	2.0	4
130	The inhibition mechanism of H2O at hydrothermal aging over Pt/SiO2-Al2O3 for NO oxidation. Journal of Environmental Chemical Engineering, 2021, 9, 105497.	3.3	4
131	Precursor effects in preparation CeO2-ZrO2-Al2O3 materials. Journal of Environmental Chemical Engineering, 2021, 9, 106558.	3.3	4
132	Synthesis of Zirconia–Palladium Core–Shell Nanoparticles as Three-Way Catalysts. Catalysis Letters, 2015, 145, 1420-1428.	1.4	3
133	Design and synthetize highly active Pd-only three-way catalyst by optimizing the reducibility of CeO2-ZrO2-Al2O3 support. Molecular Catalysis, 2020, 482, 110696.	1.0	3
134	Nano-size effects of NH4Al(OH)2CO3 on construction CeO2-ZrO2-Al2O3 materials with high performance. Journal of Alloys and Compounds, 2021, 879, 160476.	2.8	3
135	The preparation of Pd/CeO2–ZrO2–Al2O3 catalyst with superior structural stability: effect of zirconia incorporation method. Journal of Materials Science, 2020, 55, 9993-10008.	1.7	3
136	Pd-Based Catalyst on Alumina with Perovskite (La0.67Fe0.83Cu0.17O3) to Reduce Ammonia Content in Natural Gas Exhaust. Catalysis Letters, 2021, 151, 3582-3591.	1.4	2
137	The modification of Ag/Al ₂ O ₃ catalyst and application of combined catalysts in methanolâ€SCR of NO. Canadian Journal of Chemical Engineering, 2015, 93, 2117-2123.	0.9	1
138	New Insights into the Role of Nd in CeO2–ZrO2–Al2O3 Composite and Supported Pd Catalyst. Russian Journal of Physical Chemistry A, 2018, 92, 1689-1698.	0.1	1
139	Dispersion improvement and activity promotion of Pt catalysts supported on a Ce-based support by pH adjustment. New Journal of Chemistry, 2018, 42, 15639-15647.	1.4	1
140	Enhanced Durability of Monolithic V ₂ O ₅ –WO ₃ /TiO _{2Catalysts Prepared by a Novel One-Pot Method for the Selective Catalytic Reduction of NO_x with NH₃. Journal of Chemical Engineering of Japan, 2021, 54, 438-448.}	; 0.3	0