Martin Breitenlechner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3536237/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 2011, 476, 429-433.	27.8	1,114
2	Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere. Nature, 2013, 502, 359-363.	27.8	774
3	The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature, 2016, 533, 527-531.	27.8	540
4	Ion-induced nucleation of pure biogenic particles. Nature, 2016, 533, 521-526.	27.8	528
5	Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles. Science, 2014, 344, 717-721.	12.6	456
6	Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17223-17228.	7.1	300
7	Global atmospheric particle formation from CERN CLOUD measurements. Science, 2016, 354, 1119-1124.	12.6	289
8	Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15019-15024.	7.1	208
9	Causes and importance of new particle formation in the presentâ€day and preindustrial atmospheres. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8739-8760.	3.3	198
10	Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. Science Advances, 2018, 4, eaau5363.	10.3	164
11	Detection of Plant Volatiles after Leaf Wounding and Darkening by Proton Transfer Reaction "Time-of-Flight―Mass Spectrometry (PTR-TOF). PLoS ONE, 2011, 6, e20419.	2.5	152
12	Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9122-9127.	7.1	118
13	The effect of acid–base clustering and ions on the growth of atmospheric nano-particles. Nature Communications, 2016, 7, 11594.	12.8	116
14	PTR3: An Instrument for Studying the Lifecycle of Reactive Organic Carbon in the Atmosphere. Analytical Chemistry, 2017, 89, 5824-5831.	6.5	112
15	Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12053-12058.	7.1	107
16	Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,377.	3.3	71
17	Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation. Atmospheric Chemistry and Physics, 2018, 18, 65-79.	4.9	56
18	Validity and limitations of simple reaction kinetics to calculate concentrations of organic compounds from ion counts in PTR-MS. Atmospheric Measurement Techniques, 2019, 12, 6193-6208.	3.1	53

#	Article	IF	CITATIONS
19	Formation of Highly Oxygenated Organic Molecules from α-Pinene Ozonolysis: Chemical Characteristics, Mechanism, and Kinetic Model Development. ACS Earth and Space Chemistry, 2019, 3, 873-883.	2.7	52
20	Mechanistic study of the formation of ring-retaining and ring-opening products from the oxidation of aromatic compounds under urban atmospheric conditions. Atmospheric Chemistry and Physics, 2019, 19, 15117-15129.	4.9	52
21	Insight into Acid–Base Nucleation Experiments by Comparison of the Chemical Composition of Positive, Negative, and Neutral Clusters. Environmental Science & Technology, 2014, 48, 13675-13684.	10.0	51
22	First observation of a potential non-invasive breath gas biomarker for kidney function. Journal of Breath Research, 2013, 7, 017110.	3.0	38
23	Using collision-induced dissociation to constrain sensitivity of ammonia chemical ionization mass spectrometry (NH ₄ ⁺) Tj E 1861-1870.	TQq1 1 0.	784314 rg러
24	Investigation of the oxidation of methyl vinyl ketone (MVK) by OH radicals in the atmospheric simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2018, 18, 8001-8016.	4.9	22
25	Dimensionality-reduction techniques for complex mass spectrometric datasets: application to laboratory atmospheric organic oxidation experiments. Atmospheric Chemistry and Physics, 2020, 20, 1021-1041.	4.9	19
26	Technical note: Conversion of isoprene hydroxy hydroperoxides (ISOPOOHs) on metal environmental simulation chamber walls. Atmospheric Chemistry and Physics, 2017, 17, 4053-4062.	4.9	13
27	A versatile vacuum ultraviolet ion source for reduced pressure bipolar chemical ionization mass spectrometry. Atmospheric Measurement Techniques, 2022, 15, 1159-1169.	3.1	7
28	First eddy covariance flux measurements of semi-volatile organic compounds with the PTR3-TOF-MS. Atmospheric Measurement Techniques, 2021, 14, 8019-8039.	3.1	6
29	Application of chemical derivatization techniques combined with chemical ionization mass spectrometry to detect stabilized Criegee intermediates and peroxy radicals in the gas phase. Atmospheric Measurement Techniques, 2021, 14, 2501-2513.	3.1	5
30	Role of organics in particle nucleation: From the lab to global model. , 2013, , .		1
31	Ternary H[sub 2]SO[sub 4]-H[sub 2]O-NH[sub 3] neutral and charged nucleation rates for a wide range of atmospheric conditions. , 2013, , .		0