Igor Yu Malyshev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3535912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current Concept and Update of the Macrophage Plasticity Concept: Intracellular Mechanisms of Reprogramming and M3 Macrophage "Switch―Phenotype. BioMed Research International, 2015, 2015, 1-22.	0.9	214
2	Nitric oxide is involved in heat-induced HSP70 accumulation. FEBS Letters, 1995, 370, 159-162.	1.3	81
3	Nitric oxide donor induces HSP70 accumulation in the heart and in cultured cells. FEBS Letters, 1996, 391, 21-23.	1.3	74
4	NO-Dependent Mechanisms of Adaptation to Hypoxia. Nitric Oxide - Biology and Chemistry, 1999, 3, 105-113.	1.2	54
5	Production and Storage of Nitric Oxide in Adaptation to Hypoxia. Nitric Oxide - Biology and Chemistry, 1999, 3, 393-401.	1.2	46
6	Differences in adaptive stabilization of structures in response to stress and hypoxia relate with the accumulation of hsp70 isoforms. Molecular and Cellular Biochemistry, 1992, 111, 87-95.	1.4	40
7	Macrophages Reprogrammed In Vitro Towards the M1 Phenotype and Activated with LPS Extend Lifespan of Mice with Ehrlich Ascites Carcinoma. Medical Science Monitor Basic Research, 2015, 21, 226-234.	2.6	37
8	Dinitrosyl iron complexes with thiol-containing ligands and S -nitroso-D,L -penicillamine as inductors of heat shock protein synthesis in H35 hepatoma cells. FEBS Letters, 1999, 455, 179-182.	1.3	36
9	Application of the nitric oxide donor SNAP to cardiomyocytes in culture provides protection against oxidative stress. Nitric Oxide - Biology and Chemistry, 2002, 7, 127-131.	1.2	31
10	Adaptation to intermittent hypoxia restricts nitric oxide overproduction and prevents beta-amyloid toxicity in rat brain. Nitric Oxide - Biology and Chemistry, 2010, 23, 289-299.	1.2	29
11	Role of Nitric Oxide in Prevention of Cognitive Disorders in Neurodegenerative Brain Injuries in Rats. Bulletin of Experimental Biology and Medicine, 2008, 146, 391-395.	0.3	25
12	Adaptation to stress increases the heart resistance to ischemic and reperfusion arrhythmias. Journal of Molecular and Cellular Cardiology, 1989, 21, 299-303.	0.9	23
13	Adaptation to hypoxia prevents disturbances in cerebral blood flow during neurodegenerative process. Bulletin of Experimental Biology and Medicine, 2006, 142, 169-172.	0.3	17
14	M3 Macrophages Stop Division of Tumor Cells In Vitro and Extend Survival of Mice with Ehrlich Ascites Carcinoma. Medical Science Monitor Basic Research, 2017, 23, 8-19.	2.6	16
15	Hypotensive effect and tissue distribution of the dinitrosyl iron complexes, a nitric oxide donor. Bulletin of Experimental Biology and Medicine, 1998, 125, 23-25.	0.3	15
16	Adaptive Defense of the Organism Annals of the New York Academy of Sciences, 1996, 793, 371-385.	1.8	14
17	Detection and Description of Various Stores of Nitric Oxide Store in Vascular Wall. Bulletin of Experimental Biology and Medicine, 2003, 136, 226-230.	0.3	14
18	Role of heat shock proteins HSP70 and HSP32 in the protective effect of adaptation of cultured HT22 hippocampal cells to oxidative stress. Bulletin of Experimental Biology and Medicine, 2007, 144, 174-177.	0.3	14

IGOR YU MALYSHEV

#	Article	IF	CITATIONS
19	Adaptive protection of the heart and stabilization of myocardial structures. Basic Research in Cardiology, 1991, 86, 87-98.	2.5	12
20	Possible use of adaptation to hypoxia in Alzheimer's disease: a hypothesis. Medical Science Monitor, 2005, 11, HY31-8.	0.5	11
21	Role of extracellular and intracellular nitric oxide in the regulation of macrophage responses. Bulletin of Experimental Biology and Medicine, 2006, 141, 404-406.	0.3	9
22	Alternative Reprogramming of M1/M2 Phenotype of Mouse Peritoneal Macrophages In Vitro with Interferon-Î ³ and Interleukin-4. Bulletin of Experimental Biology and Medicine, 2012, 152, 548-551.	0.3	9
23	Adaptation to stress exposure prevents arrhythmogenic and contractural effects of the excess of Ca2+ on the heart by the increased activity of sarcoplasmic reticulum. Basic Research in Cardiology, 1990, 85, 96-103.	2.5	8
24	The Role of hsp70 and IP3-DAG Mechanism in the Adaptive Stabilization of Structures and Heart Protection. Journal of Molecular and Cellular Cardiology, 1996, 28, 835-843.	0.9	8
25	Adaptation to heat of cardiomyoblasts in culture protects them against heat shock: role of nitric oxide and heat shock proteins. Biochemistry (Moscow), 2003, 68, 816-821.	0.7	8
26	Resistance to Neurodegenerative Brain Damage in August and Wistar Rats. Bulletin of Experimental Biology and Medicine, 2005, 139, 540-542.	0.3	8
27	Mechanism of adaptation of the vascular system to chronic changes in nitric oxide level in the organism. Bulletin of Experimental Biology and Medicine, 2006, 142, 670-674.	0.3	7
28	Enhanced production of nitric oxide in rat organs in heat shock. Bulletin of Experimental Biology and Medicine, 1996, 121, 471-474.	0.3	6
29	Formation and Role of Nitric Oxide Stores in Adaptation to Hypoxia. , 2006, 578, 35-40.		6
30	SP-D-Dependent Regulation of NO Metabolism in Lipopolysaccharide-Stimulated Peritoneal Macrophages. Bulletin of Experimental Biology and Medicine, 2009, 147, 415-420.	0.3	6
31	Physiological organization of immune response based on the homeostatic mechanism of matrix reprogramming: Implication in tumor and biotechnology. Medical Hypotheses, 2014, 82, 754-765.	0.8	6
32	C57BL/6N Mice Are More Resistant to Ehrlich Ascites Tumors Than C57BL/6J Mice: The Role of Macrophage Nitric Oxide. Medical Science Monitor Basic Research, 2015, 21, 235-240.	2.6	6
33	Differences in NO generation during heat shock in genetically different populations of rats. Bulletin of Experimental Biology and Medicine, 1996, 121, 572-575.	0.3	5
34	Long-term cardiac protective effect of nitric oxide. Bulletin of Experimental Biology and Medicine, 1998, 125, 17-19.	0.3	5
35	Antistress Effect of Nitric Oxide. Biology Bulletin, 2001, 28, 387-393.	0.1	5
36	Nitric Oxide Storage in the Cardiovascular System. Biology Bulletin, 2002, 29, 477-486.	0.1	5

#	Article	IF	CITATIONS
37	Direct and cross-protective effects of heat adaptation in cultured cells. Bulletin of Experimental Biology and Medicine, 2003, 135, 127-129.	0.3	5
38	Features of the functional activity of macrophage link of immunity with gastroesophageal reflux disease depending on the type of reluctate: in vitro model. Terapevticheskii Arkhiv, 2018, 90, 19-23.	0.2	5
39	In Vivo Accumulation of nitric oxide in blood vessels. Bulletin of Experimental Biology and Medicine, 1999, 127, 571-574.	0.3	4
40	Synthesis of heat shock proteins (HSP70) in blood leukocytes as a criterion of the resistance to stress injury. Bulletin of Experimental Biology and Medicine, 2006, 142, 660-662.	0.3	4
41	GO Nanosheets: Promising Nano Carrier for the S29,		

IGOR YU MALYSHEV

#	Article	IF	CITATIONS
55	Title is missing!. Biology Bulletin, 2001, 28, 491-498.	0.1	1
56	Stress Response and Apoptosis in Pro- and Antiinflammatory Macrophages. Bulletin of Experimental Biology and Medicine, 2004, 138, 140-143.	0.3	1
57	Specific Response of the Organism and Blood Leukocytes in Rats of Different Genetic Strains to Hypoxia. Bulletin of Experimental Biology and Medicine, 2008, 146, 411-414.	0.3	1
58	Protective Effects of Adaptation to Hypoxia in Experimental Alzheimer's Disease. , 2012, , 155-171.		1
59	Nitric oxide prevents cognitive disorders and neurodegeneration in rats with experimental Alzheimer's disease. FASEB Journal, 2010, 24, 568.4.	0.2	1
60	Effect of adaptation to stress on electrical activity, contractility, and resistance of papillary muscle to excess of intracellar calcium. Bulletin of Experimental Biology and Medicine, 1989, 108, 1541-1545.	0.3	0
61	Prevention of adrenalin-induced arrhythmias by the calmodulin blocker trifluoperazine. Bulletin of Experimental Biology and Medicine, 1989, 108, 973-976.	0.3	0
62	Adaptation to stress increases resistance of the isolated heart to Ca++-induced damage by optimizing calcium pump operation in the sarcoplasmic reticulum. Bulletin of Experimental Biology and Medicine, 1989, 108, 1392-1395.	0.3	0
63	Adaptation to stress prevents the arrhythmogenic and contractural effects of the ?calcium paradox?. Bulletin of Experimental Biology and Medicine, 1990, 109, 285-288.	0.3	0
64	Adaptation to stress increases the resistance of nuclear DNA of heart cells through heat shock protein accumulation in the nucleus. Bulletin of Experimental Biology and Medicine, 1991, 112, 1069-1072.	0.3	0
65	Adaptation to stress increases the resistance of heart cell nuclei to the damaging action of single-stranded exogenous DNA. Bulletin of Experimental Biology and Medicine, 1991, 111, 588-591.	0.3	0
66	Comparison of the effect of adaptation to stress and to high altitude hypoxia on resistance of the heart to reperfusion injury after total ischemia. Bulletin of Experimental Biology and Medicine, 1991, 112, 916-919.	0.3	0
67	Adaptation to stress prevents the cardiotoxic effect of rifampicin but not that of polymyxin B. Bulletin of Experimental Biology and Medicine, 1991, 112, 1377-1380.	0.3	0
68	Biphasic character of the phenomenon of adaptive stabilization of structures during long-term adaptation of the organism to stress. Bulletin of Experimental Biology and Medicine, 1993, 116, 1201-1204.	0.3	0
69	Generalized accumulation of stress proteins during the organism's adaptation to stress. Bulletin of Experimental Biology and Medicine, 1993, 116, 1049-1051.	0.3	0
70	Adaptive stabilization of structures and adaptive protection of the heart in rats of two different genetic strains: Role of heat-shock proteins hsp 70. Bulletin of Experimental Biology and Medicine, 1994, 118, 812-815.	0.3	0
71	Comparative analysis of polypeptides in the heat shock proteins synthesized in the myocardium of Wistar and August rats. Bulletin of Experimental Biology and Medicine, 1995, 120, 675-677.	0.3	0
72	Seasonal differences in the development of heightened resistance of the isolated heart during adaptation to physical exercise. Bulletin of Experimental Biology and Medicine, 1995, 120, 938-940.	0.3	0

IGOR YU MALYSHEV

#	Article	IF	CITATIONS
73	Increased resistance to heat shock of isolated hearts from rats adapted to moderate physical exercise. Bulletin of Experimental Biology and Medicine, 1995, 119, 245-247.	0.3	0
74	Donor of nitric oxide improves, while NO-synthase inhibitor impairs resistance and adaptation to strenous physical exercise. Bulletin of Experimental Biology and Medicine, 1998, 125, 336-339.	0.3	0
75	Role of mitochondria and sarcoplasmic reticulum Ca2+-transport in the NO donor-induced cardioprotection. Journal of Molecular and Cellular Cardiology, 2001, 33, A77.	0.9	0
76	The application of the nitric oxide donor SNAP protects cardiomyocytes against oxidative stress. Journal of Molecular and Cellular Cardiology, 2001, 33, A78.	0.9	0
77	Antiapoptotic effect of heat adaptation in cultured cells. Bulletin of Experimental Biology and Medicine, 2003, 135, 123-126.	0.3	0
78	Effect of Transauricular Electroacupuncture on Stress-Induced Changes in Cognitive Function and Erosions of the Gastric Mucosa in Rats. Bulletin of Experimental Biology and Medicine, 2005, 139, 176-179.	0.3	0
79	Antiarrhythmic effect of heat adaptation in ischemic and reperfusion injury to the heart. Bulletin of Experimental Biology and Medicine, 2007, 143, 9-11.	0.3	0
80	Inversion of stress response reprogramming phenomenon in lipopolysaccharide-stimulated alveolar macrophages. Bulletin of Experimental Biology and Medicine, 2007, 144, 507-510.	0.3	0
81	Mechanisms of Activation and Inactivation of HSP70 Synthesis. SpringerBriefs in Biochemistry and Molecular Biology, 2013, , 47-61.	0.3	0
82	Effects of Phenotype of Retinal Macrophages on the Features of Angiogenesis of Murine Retina. Bulletin of Experimental Biology and Medicine, 2016, 162, 184-186.	0.3	0
83	Disorder in functional phenotype of alveolar macrophages in influence of risk factors for chronic obstructive pulmonary disease (COLD): age―and genetic predisposition. FASEB Journal, 2012, 26, lb487.	0.2	0
84	Effect of acute hypoxia on phenotype and plasticity of M1 and M2 macrophages. FASEB Journal, 2013, 27, lb490.	0.2	0
85	Surfactant protein D as additional marker in diagnostics of asthma and its combination with gastroesophageal reflux disease with pulmonary manifestations. , 2015, , .		0
86	Alveolar macrophages phenotype in patients with asthma and its combination with gastroesophageal reflux disease with pulmonary manifestations. , 2015, , .		0