
Lilia Rene Cavaglieri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3535416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fungi and mycotoxins in silage: an overview. Journal of Applied Microbiology, 2013, 115, 637-643.	3.1	114
2	Adsorption of ochratoxin A and zearalenone by potential probiotic Saccharomyces cerevisiae strains and its relation with cell wall thickness. Journal of Applied Microbiology, 2012, 113, 256-264.	3.1	110
3	Effect of low levels of aflatoxin B1 on performance, biochemical parameters, and aflatoxin B1 in broiler liver tissues in the presence of monensin and sodium bentonite. Poultry Science, 2011, 90, 48-58.	3.4	102
4	Fungi and selected mycotoxins from pre- and postfermented corn silage. Journal of Applied Microbiology, 2008, 104, 1034-1041.	3.1	90
5	Fungal and mycotoxins contamination in corn silage: Monitoring risk before and after fermentation. Journal of Stored Products Research, 2013, 52, 42-47.	2.6	64
6	Impact of mycotoxin contamination in the animal feed industry. Current Opinion in Food Science, 2019, 29, 99-108.	8.0	58
7	Antioxidant and cytoprotective effect of peptides produced by hydrolysis of whey protein concentrate with trypsin. Food Chemistry, 2020, 319, 126472.	8.2	58
8	Zearalenone and Its Derivatives α-Zearalenol and β-Zearalenol Decontamination by Saccharomyces cerevisiae Strains Isolated from Bovine Forage. Toxins, 2015, 7, 3297-3308.	3.4	53
9	Intestinal toxicity of deoxynivalenol is limited by Lactobacillus rhamnosus RC007 in pig jejunum explants. Archives of Toxicology, 2018, 92, 983-993.	4.2	51
10	Screening procedures for selecting rhizobacteria with biocontrol effects upon Fusarium verticillioides growth and fumonisin B1 production. Research in Microbiology, 2004, 155, 747-754.	2.1	50
11	Comparative analysis of the mycobiota and mycotoxins contaminating corn trench silos and silo bags. Journal of the Science of Food and Agriculture, 2011, 91, 1474-1481.	3.5	48
12	Sodium bentonite and monensin under chronic aflatoxicosis in broiler chickens. Poultry Science, 2011, 90, 352-357.	3.4	48
13	In vitro study on the effect of Saccharomyces cerevisiae strains on growth and mycotoxin production by Aspergillus carbonarius and Fusarium graminearum. International Journal of Food Microbiology, 2013, 161, 182-188.	4.7	44
14	Fungi and natural incidence of selected mycotoxins in barley rootlets. Journal of Stored Products Research, 2009, 45, 147-150.	2.6	39
15	Mycobiota and mycotoxins in malted barley and brewer's spent grain from Argentinean breweries. Letters in Applied Microbiology, 2011, 53, 649-655.	2.2	37
16	Effect of microencapsulation in whey protein and water-soluble chitosan derivative on the viability of the probiotic Kluyveromyces marxianus VM004 during storage and in simulated gastrointestinal conditions. LWT - Food Science and Technology, 2020, 118, 108844.	5.2	36
17	Influence of water activity, temperature and time on mycotoxins production on barley rootlets. Letters in Applied Microbiology, 2006, 42, 179-184.	2.2	35
18	Determination of mycobiota and mycotoxins in pig feed in central Argentina. Letters in Applied Microbiology, 2008, 46, 555-561.	2.2	35

#	Article	IF	CITATIONS
19	A Saccharomyces cerevisiae RC016-based feed additive reduces liver toxicity, residual aflatoxin B1 levels and positively influences intestinal morphology in broiler chickens fed chronic aflatoxin B1-contaminated diets. Animal Nutrition, 2020, 6, 31-38.	5.1	33
20	Genotoxicity and cytotoxicity evaluation of probiotic <i>Saccharomyces cerevisiae </i> RC016: a 60-day subchronic oral toxicity study in rats. Journal of Applied Microbiology, 2014, 117, 824-833.	3.1	31
21	Use of yeast (Pichia kudriavzevii) as a novel feed additive to ameliorate the effects of aflatoxin B1 on broiler chicken performance. Mycotoxin Research, 2017, 33, 273-283.	2.3	29
22	Aspergillus fumigatus toxicity and gliotoxin levels in feedstuff for domestic animals and pets in Argentina. Letters in Applied Microbiology, 2010, 50, 77-81.	2.2	28
23	<i>Saccharomyces cerevisiae</i> strains and the reduction of <i>Aspergillus parasiticus</i> growth and aflatoxin B ₁ production at different interacting environmental conditions, <i>inÂvitro</i> . Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2012, 29, 1443-1449.	2.3	27
24	The corn influence on the adsorption levels of aflatoxin B ₁ and zearalenone by yeast cell wall. Journal of Applied Microbiology, 2013, 114, 655-662.	3.1	26
25	Presence of aiiA homologue genes encoding for N-Acyl homoserine lactone-degrading enzyme in aflatoxin B1-decontaminating Bacillus strains with potential use as feed additives. Food and Chemical Toxicology, 2019, 124, 316-323.	3.6	25
26	Gliotoxin contamination in and pre- and postfermented corn, sorghum and wet brewer's grains silage in Sao Paulo and Rio de Janeiro State, Brazil. Journal of Applied Microbiology, 2012, 112, 865-873.	3.1	19
27	Antifungal and aflatoxin-reducing activity of extracellular compounds produced by soil Bacillus strains with potential application in agriculture. Food Control, 2018, 85, 392-399.	5.5	19
28	The production of yeast cell wall using an agroindustrial waste influences the wall thickness and is implicated on the aflatoxin B1 adsorption process. Food Research International, 2018, 111, 306-313.	6.2	19
29	In Vitro Activity of Neem (Azadirachta indica) Oil on Growth and Ochratoxin A Production by Aspergillus carbonarius Isolates. Toxins, 2019, 11, 579.	3.4	18
30	Aflatoxin B ₁ adsorption/desorption dynamics in the presence of <i>Lactobacillus rhamnosus</i> RC007 in a gastrointestinal tract-simulated model. Journal of Applied Microbiology, 2019, 126, 223-229.	3.1	18
31	Statistical optimization of culture conditions for biomass production of probiotic gut-borne <i>Saccharomyces cerevisiae</i> strain able to reduce fumonisin B ₁ . Journal of Applied Microbiology, 2013, 114, 1338-1346.	3.1	16
32	Novel yeast isolated from broilers' feedstuff, gut and faeces as aflatoxin B ₁ adsorbents. Journal of Applied Microbiology, 2016, 121, 1766-1776.	3.1	16
33	Effect of monogastric and ruminant gastrointestinal conditions onin vitroaflatoxin B1adsorption ability by a montmorillonite. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2013, 30, 743-749.	2.3	15
34	Evaluation of zearalenone, α-zearalenol, β-zearalenol, zearalenone 4-sulfate and β-zearalenol 4-glucoside levels during the ensiling process World Mycotoxin Journal, 2014, 7, 291-295.	1.4	15
35	Potentiation of the effect of a commercial animal feed additive mixed with different probiotic yeast strains on the adsorption of aflatoxin B1. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 970-976.	2.3	15
36	Bakery by-products based feeds borne- Saccharomyces cerevisiae strains with probiotic and antimycotoxin effects plus antibiotic resistance properties for use in animal production. Food and Chemical Toxicology, 2017, 107, 630-636.	3.6	14

#	Article	IF	CITATIONS
37	<i>Pediococcus acidolactici</i> and <i>Pediococcus pentosaceus</i> isolated from a rainbow trout ecosystem have probiotic and ABF1 adsorbing/degrading abilities <i>in vitro</i> . Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2017, 34, 2118-2130.	2.3	13
38	Binding of Aflatoxin B1 to Lactic Acid Bacteria and Saccharomyces cerevisiae in vitro: A Useful Model to Determine the Most Efficient Microorganism. , 0, , .		9
39	Efficacy of corn silage inoculants on the fermentation quality under farm conditions and their influence onAspergillus parasitucus, A. flavus and A. fumigatusdetermined by q-PCR. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 229-235.	2.3	9
40	Lithothamnium calcareum (Pallas) Areschoug seaweed adsorbs aflatoxin B1 in vitro and improves broiler chicken's performance. Mycotoxin Research, 2020, 36, 371-379.	2.3	8
41	Typing clinical and animal environment <i>Aspergillus fumigatus</i> gliotoxin producer strains isolated from Brazil by PCR-RFLP markers. Letters in Applied Microbiology, 2013, 57, 484-491.	2.2	7
42	Probiotic characteristics and aflatoxin B ₁ binding ability of <i>Debaryomyces hansenii</i> and <i>Kazaschtania exigua</i> from rainbow trout environment. Aquaculture Research, 2018, 49, 1588-1597.	1.8	7
43	Culture medium and gastrointestinal environment positively influence the Saccharomyces cerevisiae RC016Âcell wall polysaccharide profile and aflatoxin B1 bioadsorption. LWT - Food Science and Technology, 2020, 126, 109306.	5.2	7
44	Influence of technological procedures on viability, probiotic and anti-mycotoxin properties of Saccharomyces boulardii RC009, and biological safety studies. Current Research in Food Science, 2021, 4, 132-140.	5.8	7
45	Saccharomyces cerevisiae as a probiotic agent and a possible aflatoxin B1 adsorbent in simulated fish intestinal tract conditions. Arquivo Brasileiro De Medicina Veterinaria E Zootecnia, 2020, 72, 862-870.	0.4	6
46	<i>Minthostachys verticillata</i> essential oils as potential phytogenic additives and chemoprotective strategy on aflatoxin B ₁ toxicity. Journal of Applied Animal Research, 2019, 47, 217-222.	1.2	4
47	Probiotic gut-borne Saccharomyces cerevisiae reduces liver toxicity caused by aflatoxins in weanling piglets. World Mycotoxin Journal, 2021, 14, 379-388.	1.4	4
48	Cytotoxic activity and genotoxicity of antioxidant WPC-hydrolysates and their probiotics compatibility as Potential Functional Feed Additive. Food Bioscience, 2021, 41, 100922.	4.4	2
49	Respiratory tract clinometry, fat thickness, haematology and productive parameters associated with direct-fed microbials used as growth promoter antibiotic alternative in weaned piglets. Veterinary and Animal Science, 2022, 16, 100246.	1.5	2
50	Cytotoxicity in Vero cells and cytokines analyses in Balb/c mice as safety assessments of the probiotic mixture <i>Saccharomyces cerevisiae</i> RC016 and <i>Lactobacillus rhamnosus</i> RC007 for use as a feed additive. Letters in Applied Microbiology, 2020, 71, 400-404.	2.2	1