
Zoltan Sarnyai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3535361/publications.pdf Version: 2024-02-01

ZOLTAN SADNVAL

#	Article	IF	CITATIONS
1	Cannabidiol for at risk for psychosis youth: A randomized controlled trial. Microbial Biotechnology, 2022, 16, 419-432.	0.9	9
2	Schizophrenia: a disorder of broken brain bioenergetics. Molecular Psychiatry, 2022, 27, 2393-2404.	4.1	26
3	Adverse childhood experiences and allostatic load: A systematic review. Neuroscience and Biobehavioral Reviews, 2022, 136, 104605.	2.9	40
4	Allostatic load and systemic comorbidities in psychiatric disorders. Psychoneuroendocrinology, 2022, 140, 105726.	1.3	10
5	Human nail cortisol as a retrospective biomarker of chronic stress: A systematic review. Psychoneuroendocrinology, 2021, 123, 104903.	1.3	24
6	Within-treatment changes in a novel addiction treatment program using traditional Amazonian medicine. Therapeutic Advances in Psychopharmacology, 2021, 11, 204512532098663.	1.2	12
7	Understanding the pathology of psychiatric disorders in refugees. Psychiatry Research, 2021, 296, 113661.	1.7	3
8	Building brain capital. Neuron, 2021, 109, 1430-1432.	3.8	5
9	Relationship between allostatic load and clinical outcomes in youth at ultra-high risk for psychosis in the NEURAPRO study. Schizophrenia Research, 2020, 226, 38-43.	1.1	13
10	Cross-sectional association of seafood consumption, polyunsaturated fatty acids and depressive symptoms in two Torres Strait communities. Nutritional Neuroscience, 2020, 23, 353-362.	1.5	8
11	Health risk behaviours and allostatic load: A systematic review. Neuroscience and Biobehavioral Reviews, 2020, 108, 694-711.	2.9	90
12	The Gut Microbiome in Psychosis From Mice to Men: A Systematic Review of Preclinical and Clinical Studies. Frontiers in Psychiatry, 2020, 11, 799.	1.3	19
13	Ketogenic therapy in neurodegenerative and psychiatric disorders: From mice to men. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 101, 109913.	2.5	44
14	Ketogenic Therapy in Serious Mental Illness: Emerging Evidence. International Journal of Neuropsychopharmacology, 2020, 23, 434-439.	1.0	9
15	Stress, allostatic load and mental health in Indigenous Australians. Stress, 2020, 23, 509-518.	0.8	22
16	Effects of beta-hydroxybutyrate administration on MK-801-induced schizophrenia-like behaviour in mice. Psychopharmacology, 2020, 237, 1397-1405.	1,5	28
17	Protocol for the Use of the Ketogenic Diet in Preclinical and Clinical Practice. Methods in Molecular Biology, 2020, 2138, 83-98.	0.4	8
18	Testing the Effects of Dietary Seafood Consumption on Depressive Symptoms. Methods in Molecular Biology, 2020, 2138, 233-242.	0.4	0

#	Article	IF	CITATIONS
19	Ketogenic diet and olanzapine treatment alone and in combination reduce a pharmacologically-induced prepulse inhibition deficit in female mice. Schizophrenia Research, 2019, 212, 221-224.	1.1	9
20	Social rank does not affect sperm quality in male African wild dogs (Lycaon pictus). Reproduction, Fertility and Development, 2019, 31, 875.	0.1	11
21	Dog appeasing pheromone prevents the androgen surge and may reduce contact dominance and active submission after stressful interventions in African wild dogs (Lycaon pictus). PLoS ONE, 2019, 14, e0212551.	1.1	12
22	Hair cortisol, allostatic load, and depressive symptoms in Australian Aboriginal and Torres Strait Islander people. Stress, 2019, 22, 312-320.	0.8	22
23	A Neuroethics Framework for the Australian Brain Initiative. Neuron, 2019, 101, 365-369.	3.8	11
24	Ketogenic diet for schizophrenia. Current Opinion in Psychiatry, 2019, 32, 394-401.	3.1	33
25	The Open Field Test for Measuring Locomotor Activity and Anxiety-Like Behavior. Methods in Molecular Biology, 2019, 1916, 99-103.	0.4	339
26	Ketogenic diet prevents impaired prepulse inhibition of startle in an acute NMDA receptor hypofunction model of schizophrenia. Schizophrenia Research, 2019, 206, 244-250.	1.1	32
27	The Forced Swim Test for Depression-Like Behavior in Rodents. Methods in Molecular Biology, 2019, 1916, 75-80.	0.4	36
28	The Y-Maze for Assessment of Spatial Working and Reference Memory in Mice. Methods in Molecular Biology, 2019, 1916, 105-111.	0.4	538
29	The Elevated Plus Maze Test for Measuring Anxiety-Like Behavior in Rodents. Methods in Molecular Biology, 2019, 1916, 69-74.	0.4	126
30	Object Burying Test for Assessment of Obsessive Compulsive Behaviors in Mice. Methods in Molecular Biology, 2019, 1916, 81-85.	0.4	4
31	Free Dyadic Social Interaction Test in Mice. Methods in Molecular Biology, 2019, 1916, 93-97.	0.4	7
32	The Nest Building Test in Mice for Assessment of General Well-Being. Methods in Molecular Biology, 2019, 1916, 87-91.	0.4	13
33	Glucose homeostasis in major depression and schizophrenia: a comparison among drug-naÃ ⁻ ve first-episode patients. European Archives of Psychiatry and Clinical Neuroscience, 2019, 269, 373-377.	1.8	19
34	The Therapeutic Potential of Ketogenic Diet Throughout Life: Focus on Metabolic, Neurodevelopmental and Neurodegenerative Disorders. Advances in Experimental Medicine and Biology, 2019, 1178, 77-101.	0.8	11
35	Chronic Helminth Infection Perturbs the Gut-Brain Axis, Promotes Neuropathology, and Alters Behavior. Journal of Infectious Diseases, 2018, 218, 1511-1516.	1.9	6
36	Neuropsychiatric Sequelae of Early Nutritional Modifications: A Beginner's Guide to Behavioral Analysis. Methods in Molecular Biology, 2018, 1735, 403-420.	0.4	8

#	Article	IF	CITATIONS
37	Allostatic load is associated with psychotic symptoms and decreases with antipsychotic treatment in patients with schizophrenia and first-episode psychosis. Psychoneuroendocrinology, 2018, 90, 35-42.	1.3	47
38	From Molecule to Market. , 2018, , 25-56.		0
39	Adverse effect of early-life high-fat/high-carbohydrate ("Westernâ€) diet on bacterial community in the distal bowel of mice. Nutrition Research, 2018, 50, 25-36.	1.3	20
40	Cortisol Awakening Response and Acute Stress Reactivity in First Nations People. Scientific Reports, 2017, 7, 41760.	1.6	35
41	Connecting Brain Proteomics with Behavioural Neuroscience in Translational Animal Models of Neuropsychiatric Disorders. Advances in Experimental Medicine and Biology, 2017, 974, 97-114.	0.8	6
42	Tramadol: Effects on sexual behavior in male rats are mainly caused by its 5-HT reuptake blocking effects. Neuropharmacology, 2017, 116, 50-58.	2.0	38
43	Omega-6 to omega-3 polyunsaturated fatty acid ratio and subsequent mood disorders in young people with at-risk mental states: a 7-year longitudinal study. Translational Psychiatry, 2017, 7, e1220-e1220.	2.4	78
44	Assessment of Insulin Resistance Among Drug-Naive Patients With First-Episode Schizophrenia in the Context of Hormonal Stress Axis Activation. JAMA Psychiatry, 2017, 74, 968.	6.0	26
45	Cortisol awakening response in patients with psychosis: Systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 2016, 68, 157-166.	2.9	86
46	Allostatic load mediates the impact of stress and trauma on physical and mental health in Indigenous Australians. Australasian Psychiatry, 2016, 24, 72-75.	0.4	15
47	Mental health consequences of stress and trauma: allostatic load markers for practice and policy with a focus on Indigenous health. Australasian Psychiatry, 2015, 23, 644-649.	0.4	16
48	Prolonged Subcutaneous Administration of Oxytocin Accelerates Angiotensin II-Induced Hypertension and Renal Damage in Male Rats. PLoS ONE, 2015, 10, e0138048.	1.1	15
49	"More than skin deep†stress neurobiology and mental health consequences of racial discrimination. Stress, 2015, 18, 1-10.	0.8	385
50	Ketogenic diet reverses behavioral abnormalities in an acute NMDA receptor hypofunction model of schizophrenia. Schizophrenia Research, 2015, 169, 491-493.	1.1	46
51	Lifelong, central corticotropin-releasing factor (CRF) overexpression is associated with individual differences in cocaine-induced conditioned place preference. European Journal of Pharmacology, 2015, 753, 151-157.	1.7	8
52	Modeling combined schizophrenia-related behavioral and metabolic phenotypes in rodents. Behavioural Brain Research, 2015, 276, 130-142.	1.2	17
53	Clozapine promotes glycolysis and myelin lipid synthesis in cultured oligodendrocytes. Frontiers in Cellular Neuroscience, 2014, 8, 384.	1.8	45
54	Oxytocin in learning and addiction: From early discoveries to the present. Pharmacology Biochemistry and Behavior, 2014, 119, 3-9.	1.3	91

#	Article	IF	CITATIONS
55	Guest editorial. Pharmacology Biochemistry and Behavior, 2014, 119, 1-2.	1.3	3
56	Correction: Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission?. Journal of Neuroinflammation, 2013, 10, .	3.1	2
57	An exploratory study of cannabis withdrawal among Indigenous Australian prison inmates: study protocol. BMJ Open, 2013, 3, e002951.	0.8	5
58	Increased Prevalence of Diverse N -Methyl-D-Aspartate Glutamate Receptor Antibodies in Patients With an Initial Diagnosis of Schizophrenia. JAMA Psychiatry, 2013, 70, 271.	6.0	336
59	Estudos traducionais de neuropsiquiatria e esquizofrenia: modelos animais genéticos e de neurodesenvolvimento. Revista De Psiquiatria Clinica, 2013, 40, 41-50.	0.6	5
60	Reduced density of hypothalamic VGF-immunoreactive neurons in schizophrenia: a potential link to impaired growth factor signaling and energy homeostasis. European Archives of Psychiatry and Clinical Neuroscience, 2012, 262, 365-374.	1.8	23
61	Molecular Validation of the Acute Phencyclidine Rat Model for Schizophrenia: Identification of Translational Changes in Energy Metabolism and Neurotransmission. Journal of Proteome Research, 2012, 11, 3704-3714.	1.8	30
62	Bridging the gap between the immune and glutamate hypotheses of schizophrenia and major depression: Potential role of glial NMDA receptor modulators and impaired blood–brain barrier integrity. World Journal of Biological Psychiatry, 2012, 13, 482-492.	1.3	130
63	Influence of transgenic corticotropin-releasing factor (CRF) over-expression on social recognition memory in mice. Behavioural Brain Research, 2011, 218, 357-362.	1.2	17
64	Oxytocin as a potential mediator and modulator of drug addiction. Addiction Biology, 2011, 16, 199-201.	1.4	33
65	Optogenetics: potentials for addiction research. Addiction Biology, 2011, 16, 519-531.	1.4	15
66	Protective effects of haloperidol and clozapine on energy-deprived OLN-93 oligodendrocytes. European Archives of Psychiatry and Clinical Neuroscience, 2011, 261, 477-482.	1.8	21
67	Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: Evidence for an immune-modulated glutamatergic neurotransmission?. Journal of Neuroinflammation, 2011, 8, 94.	3.1	466
68	Behavioral and Molecular Biomarkers in Translational Animal Models for Neuropsychiatric Disorders. International Review of Neurobiology, 2011, 101, 203-238.	0.9	28
69	From molecule to market: steroid hormones and financial risk-taking. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 331-343.	1.8	89
70	Decreased expression of multidrug efflux transporters in the brains of GSK-3β transgenic mice. Brain Research, 2009, 1276, 1-10.	1.1	10
71	Single valproic acid treatment inhibits glycogen and RNA ribose turnover while disrupting glucose-derived cholesterol synthesis in liver as revealed by the [U-13C6]-d-glucose tracer in mice. Metabolomics, 2009, 5, 336-345.	1.4	34
72	Modeling Networks of Glycolysis, Overall Energy Metabolism and Drug Metabolism under a Systems Biology Approach. Annual Reports in Medicinal Chemistry, 2008, 43, 329-349.	0.5	2

#	Article	IF	CITATIONS
73	Altered behavioural adaptation in mice with neural corticotrophin-releasing factor overexpression. Genes, Brain and Behavior, 2007, 6, 598-607.	1.1	24
74	Functional Abnormalities in the Hippocampus and Impaired Hippocampal-dependent Learning in Mice Lacking the 5HT1A Receptors. CNS Neuroscience & Therapeutics, 2006, 6, 40-40.	4.0	0
75	Adaptive Changes in Postsynaptic Dopamine Receptors Despite Unaltered Dopamine Dynamics in Mice Lacking Monoamine Oxidase B. Journal of Neurochemistry, 2002, 73, 647-655.	2.1	28
76	The DBA/2J strain and prepulse inhibition of startle: a model system to test antipsychotics?. Psychopharmacology, 2001, 156, 284-290.	1.5	107
77	Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin1A receptors. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 14731-14736.	3.3	342
78	Neurobiology of Stress and Cocaine Addiction: Studies on Corticotropin-Releasing Factor in Rats, Monkeys, and Humansa. Annals of the New York Academy of Sciences, 1998, 851, 371-387.	1.8	62
79	OXYTOCIN AND ADDICTION: A REVIEW. Psychoneuroendocrinology, 1998, 23, 945-962.	1.3	174
80	Selective regulation of dopamine transporter binding in the shell of the nucleus accumbens by adrenalectomy and corticosterone-replacement. , 1998, 30, 334-337.		31
81	Neuroendocrine-Related Effects of Long-Term, â€~Binge' Cocaine Administration: Diminished Individual Differences in Stress-Induced Corticosterone Response. Neuroendocrinology, 1998, 68, 334-344.	1.2	55
82	Antisense Inhibition of 5-Hydroxytryptamine2aReceptor Induces an Antidepressant-Like Effect in Mice. Molecular Pharmacology, 1997, 52, 1056-1063.	1.0	73
83	Time-dependent alterations in corticotropin-releasing factor-like immunoreactivity in different brain regions after acute cocaine administration to rats. Neuropeptides, 1997, 31, 15-18.	0.9	22
84	Oxytocin blocks the development of heroin-fentanyl cross-tolerance in mice. Pharmacology Biochemistry and Behavior, 1995, 52, 591-594.	1.3	7
85	Brain corticotropin-releasing factor mediates â€~anxiety-like' behavior induced by cocaine withdrawal in rats. Brain Research, 1995, 675, 89-97.	1.1	249
86	Role of oxytocin in the neuroadaptation to drugs of abuse. Psychoneuroendocrinology, 1994, 19, 85-117.	1.3	121
87	Cocaine-induced elevation of plasma corticosterone is mediated by different neurotransmitter systems in rats. Pharmacology Biochemistry and Behavior, 1993, 45, 209-214.	1.3	16
88	Alterations of corticotropin-releasing factor-like immunoreactivity in different brain regions after acute cocaine administration in rats. Brain Research, 1993, 616, 315-319.	1.1	52
89	Role of Endogenous Corticotropin Releasing Factor in Mediation of Neuroendocrine and Behavioral Responses to Cholecystokinin Octapeptide Sulfate Ester in Rats. Neuroendocrinology, 1993, 57, 340-345.	1.2	58
90	Measurement of Cocaine-Induced Stereotyped Behavior in Response to Neuropeptides. Methods in Neurosciences, 1993, 14, 153-165.	0.5	5

#	Article	IF	CITATIONS
91	Critical role of endogenous corticotropin-releasing factor (CRF) in the mediation of the behavioral action of cocaine in rats. Life Sciences, 1992, 51, 2019-2024.	2.0	40
92	Oxytocin modulates behavioural adaptation to repeated treatment with cocaine in rats. Neuropharmacology, 1992, 31, 593-598.	2.0	35
93	The cocaine-induced elevation of plasma corticosterone is mediated by endogenous corticotropin-releasing factor (CRF) in rats. Brain Research, 1992, 589, 154-156.	1.1	122
94	Effects of Cocaine and Pimozide on Plasma and Brain Alpha-Melanocyte-Stimulating Hormone Levels in Rats. Neuroendocrinology, 1992, 55, 9-13.	1.2	12
95	Opposite actions of oxytocin and vasopressin in the development of cocaine-induced behavioral sensitization in mice. Pharmacology Biochemistry and Behavior, 1992, 43, 491-494.	1.3	30
96	Oxytocin blocks the development of heroin-enkephalin cross-tolerance in mice. Pharmacology Biochemistry and Behavior, 1992, 43, 187-192.	1.3	12
97	Effects of cocaine on the contents of neurohypophyseal hormones in the plasma and in different brain structures in rats. Neuropeptides, 1992, 23, 27-31.	0.9	61
98	The inhibition of oxytocin-induced grooming by a specific receptor antagonist. Physiology and Behavior, 1991, 50, 533-536.	1.0	17
99	Selective attenuation of cocaine-induced stereotyped behaviour by oxytocin: Putative role of basal forebrain target sites. Neuropeptides, 1991, 19, 51-56.	0.9	71
100	Oxytocin attenuates the cocaine-induced exploratory hyperactivity in mice. NeuroReport, 1990, 1, 200-202.	0.6	58
101	The role of oxytocin-dopamine interactions in cocaine-induced locomotor hyperactivity. Neuropharmacology, 1990, 29, 365-368.	2.0	121
102	Effect of a selective - opioid agonist, d-pen2-d-pen5 - enkephalin (DPDPE), on grooming and sniffing activity. International Journal of Psychophysiology, 1989, 7, 275-276.	0.5	0
103	Central effects of the potent and highly selective μ opioid antagonist (CTOP) in mice. European Journal of Pharmacology, 1988, 150, 355-360.	1.7	56
104	Chapter 10 Neurohypophyseal hormones and behavior. Progress in Brain Research, 1987, 72, 109-118.	0.9	13
105	Development of morphine tolerance under tonic control of brain oxytocin. Drug and Alcohol Dependence, 1986, 17, 369-375.	1.6	17
106	Oxytocin and a C-terminal derivative (Z-prolyl-d-leucine) attenuate tolerance to and dependence on morphine and interact with dopaminergic neurotransmission in the mouse brain. Neuropharmacology, 1985, 24, 413-419.	2.0	76