
Mariana Spetea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3534768/publications.pdf Version: 2024-02-01

MADIANA SDETEA

#	Article	IF	CITATIONS
1	In vivo brain GPCR signaling elucidated by phosphoproteomics. Science, 2018, 360, .	6.0	105
2	Bone Reinnervation After Fracture: A Study in the Rat. Journal of Bone and Mineral Research, 2001, 16, 1505-1510.	3.1	78
3	Peripheral versus Central Antinociceptive Actions of 6-Amino Acid-Substituted Derivatives of 14-O-Methyloxymorphone in Acute and Inflammatory Pain in the Rat. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 609-618.	1.3	71
4	Opioid Analgesia and Opioid-Induced Adverse Effects: A Review. Pharmaceuticals, 2021, 14, 1091.	1.7	66
5	μ Opioid receptor: novel antagonists and structural modeling. Scientific Reports, 2016, 6, 21548.	1.6	63
6	Selective κ receptor partial agonist HS666 produces potent antinociception without inducing aversion after i.c.v. administration in mice. British Journal of Pharmacology, 2017, 174, 2444-2456.	2.7	59
7	The µ Opioid Receptor and Ligands Acting at the µ Opioid Receptor, as Therapeutics and Potential Therapeutics. Current Pharmaceutical Design, 2014, 19, 7415-7434.	0.9	55
8	Local peripheral antinociceptive effects of 14-O-methyloxymorphone derivatives in inflammatory and neuropathic pain in the rat. European Journal of Pharmacology, 2007, 558, 60-67.	1.7	54
9	In VitroBinding and Signaling Profile of the Novel μ Opioid Receptor Agonist Endomorphin 2 in Rat Brain Membranes. Biochemical and Biophysical Research Communications, 1998, 250, 720-725.	1.0	49
10	Modulation of basal and stressâ€induced amygdaloid substance P release by the potent and selective NK1 receptor antagonist Lâ€822429. Journal of Neurochemistry, 2008, 106, 2476-2488.	2.1	49
11	Morphinans and isoquinolines: Acetylcholinesterase inhibition, pharmacophore modeling, and interaction with opioid receptors. Bioorganic and Medicinal Chemistry, 2010, 18, 5071-5080.	1.4	46
12	Peripherally Mediated Antinociception of the μ-Opioid Receptor Agonist 2-[(4,5α-Epoxy-3-hydroxy-14β-methoxy-17-methylmorphinan-6β-yl)amino]acetic Acid (HS-731) after Subcutaneous and Oral Administration in Rats with Carrageenan-Induced Hindpaw Inflammation. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 220-227.	1.3	42
13	Specific activation of the μ opioid receptor (MOR) by endomorphin 1 and endomorphin 2. European Journal of Neuroscience, 2000, 12, 577-584.	1.2	41
14	DAMGO and 6β-glycine substituted 14-O-methyloxymorphone but not morphine show peripheral, preemptive antinociception after systemic administration in a mouse visceral pain model and high intrinsic efficacy in the isolated rat vas deferens. Brain Research Bulletin, 2007, 74, 369-375.	1.4	41
15	Synthesis and Biological Evaluation of 14-Alkoxymorphinans. 18.1N-Substituted 14-Phenylpropyloxymorphinan-6-ones with Unanticipated Agonist Properties:Â Extending the Scope of Common Structureâ^'Activity Relationships. Journal of Medicinal Chemistry, 2003, 46, 1758-1763.	2.9	40
16	Discovery and Pharmacological Evaluation of a Diphenethylamine Derivative (HS665), a Highly Potent and Selective κ Opioid Receptor Agonist. Journal of Medicinal Chemistry, 2012, 55, 10302-10306.	2.9	38
17	Synthesis and Biological Evaluation of 14-Alkoxymorphinans. 22.1Influence of the 14-Alkoxy Group and the Substitution in Position 5 in 14-Alkoxymorphinan-6-ones on in Vitro and in Vivo Activities. Journal of Medicinal Chemistry, 2005, 48, 3372-3378.	2.9	36
18	Alteration in endogenous opioid systems due to chronic inflammatory pain conditions. European Journal of Pharmacology, 2002, 435, 245-252.	1.7	33

#	Article	IF	CITATIONS
19	An Opioid System in Connective Tissue: A Study of Achilles Tendon in the Rat. Journal of Histochemistry and Cytochemistry, 2001, 49, 1387-1395.	1.3	31
20	Synthesis and Biological Evaluation of 14-Alkoxymorphinans. 21.1Novel 4-Alkoxy and 14-Phenylpropoxy Derivatives of the μ Opioid Receptor Antagonist Cyprodime⊥. Journal of Medicinal Chemistry, 2004, 47, 3242-3247.	2.9	31
21	In vitro opioid activity profiles of 6-amino acid substituted derivatives of 14-O-methyloxymorphone. European Journal of Pharmacology, 2004, 483, 301-308.	1.7	30
22	In vitro and in vivo pharmacological profile of the 5-benzyl analogue of 14-methoxymetopon, a novel μ opioid analgesic with reduced propensity to alter motor function. European Journal of Pharmaceutical Sciences, 2010, 41, 125-135.	1.9	30
23	Synthesis and Biological Evaluation of 14-Alkoxymorphinans. 20.114-Phenylpropoxymetopon:Â An Extremely Powerful Analgesic. Journal of Medicinal Chemistry, 2003, 46, 4182-4187.	2.9	28
24	Anti-inflammatory effects of contralateral administration of the κ-opioid agonist U-50,488H in rats with unilaterally induced adjuvant arthritis. Rheumatology, 2006, 45, 295-302.	0.9	28
25	Variation of the Net Charge, Lipophilicity, and Side Chain Flexibility in Dmt ¹ -DALDA: Effect on Opioid Activity and Biodistribution. Journal of Medicinal Chemistry, 2012, 55, 9549-9561.	2.9	28
26	In vivo antinociception of potent mu opioid agonist tetrapeptide analogues and comparison with a compact opioid agonist - neurokinin 1 receptor antagonist chimera. Molecular Brain, 2012, 5, 4.	1.3	28
27	Injectable peptide hydrogels for controlled-release of opioids. MedChemComm, 2016, 7, 542-549.	3.5	27
28	Contralateral but not systemic administration of the κ-opioid agonist U-50,488H induces anti-nociception in acute hindpaw inflammation in rats. British Journal of Pharmacology, 2001, 132, 252-258.	2.7	25
29	A bifunctional-biased mu-opioid agonist–neuropeptide FF receptor antagonist as analgesic with improved acute and chronic side effects. Pain, 2018, 159, 1705-1718.	2.0	25
30	Opioid Receptors and Their Ligands in the Musculoskeletal System and Relevance for Pain Control. Current Pharmaceutical Design, 2014, 19, 7382-7390.	0.9	25
31	Binding characteristics of [3H]14-methoxymetopon, a high affinity u-opioid receptor agonist. European Journal of Neuroscience, 2003, 18, 290-295.	1.2	24
32	Opioid peptides and receptors in joint tissues: Study in the rat. Journal of Orthopaedic Research, 2006, 24, 1193-1199.	1.2	24
33	Molecular Docking, Molecular Dynamics, and Structure–Activity Relationship Explorations of 14-Oxygenated <i>N</i> -Methylmorphinan-6-ones as Potent μ-Opioid Receptor Agonists. ACS Chemical Neuroscience, 2017, 8, 1327-1337.	1.7	24
34	Synthesis and Biological Evaluation of 14-Alkoxymorphinans. 17. Highly δOpioid Receptor Selective 14-Alkoxy-Substituted Indolo- and Benzofuromorphinans. Journal of Medicinal Chemistry, 2002, 45, 5378-5383.	2.9	23
35	Recent Advances in the Development of 14-Alkoxy Substituted Morphinans as Potent and Safer Opioid Analgesics. Current Medicinal Chemistry, 2012, 19, 2442-2457.	1.2	23
36	Injectable peptide-based hydrogel formulations for the extended inÂvivo release of opioids. Materials Today Chemistry, 2017, 3, 49-59.	1.7	23

#	Article	IF	CITATIONS
37	Bifunctional peptide-based opioid agonist/nociceptin antagonist ligand for dual treatment of nociceptive and neuropathic pain. Pain, 2017, 158, 505-515.	2.0	23
38	Highly Potent and Selective New Diphenethylamines Interacting with the κ-Opioid Receptor: Synthesis, Pharmacology, and Structure–Activity Relationships. Journal of Medicinal Chemistry, 2017, 60, 7579-7590.	2.9	23
39	Binding, pharmacological and immunological profiles of the δ-selective opioid receptor antagonist HS 378. Life Sciences, 2001, 69, 1775-1782.	2.0	22
40	Pharmacological Investigations of N-Substituent Variation in Morphine and Oxymorphone: Opioid Receptor Binding, Signaling and Antinociceptive Activity. PLoS ONE, 2014, 9, e99231.	1.1	22
41	Synthesis and Pharmacological Evaluation of [³ H]HS665, a Novel, Highly Selective Radioligand for the Kappa Opioid Receptor. ACS Chemical Neuroscience, 2015, 6, 456-463.	1.7	20
42	Biodegradable Amphipathic Peptide Hydrogels as Extended-Release System for Opioid Peptides. Journal of Medicinal Chemistry, 2018, 61, 9784-9789.	2.9	20
43	Effect of a 6-Cyano Substituent in 14-OxygenatedN-Methylmorphinans on Opioid Receptor Binding and Antinociceptive Potency. Journal of Medicinal Chemistry, 2005, 48, 5052-5055.	2.9	19
44	Synthesis of 14-Alkoxymorphinan Derivatives and Their Pharmacological Actions. Topics in Current Chemistry, 2010, 299, 63-91.	4.0	19
45	Anti-inflammatory effect of dual nociceptin and opioid receptor agonist, BU08070, in experimental colitis in mice. European Journal of Pharmacology, 2015, 765, 582-590.	1.7	19
46	Synthesis of 6-Amino Acid Substituted Derivatives of the Highly Potent Analgesic 14-O-Methyloxymorphone. Helvetica Chimica Acta, 2003, 86, 2142-2148.	1.0	18
47	Synthesis and Biological Evaluation of 14-Alkoxymorphinans. Part 19. Helvetica Chimica Acta, 2003, 86, 2335-2341.	1.0	18
48	Identification and characterization of plant-derived alkaloids, corydine and corydaline, as novel mu opioid receptor agonists. Scientific Reports, 2020, 10, 13804.	1.6	18
49	On the Role of Peripheral Sensory and Gut Mu Opioid Receptors: Peripheral Analgesia and Tolerance. Molecules, 2020, 25, 2473.	1.7	16
50	Interaction of agonist peptide [3H]Tyr-d-Ala-Phe-Phe-NH2 with μ-opioid receptor in rat brain and CHO-μ/1 cell line. Peptides, 1998, 19, 1091-1098.	1.2	15
51	Novel approach to demonstrate high efficacy of μ opioids in the rat vas deferens: A simple model of predictive value. Brain Research Bulletin, 2010, 81, 178-184.	1.4	15
52	Mechanistic Understanding of Peptide Analogues, DALDA, [Dmt1]DALDA, and KGOP01, Binding to the Mu Opioid Receptor. Molecules, 2020, 25, 2087.	1.7	14
53	N-Phenethyl Substitution in 14-Methoxy-N-methylmorphinan-6-ones Turns Selective µ Opioid Receptor Ligands into Dual µ/δOpioid Receptor Agonists. Scientific Reports, 2020, 10, 5653.	1.6	14
54	Synthesis, Pharmacology, and Molecular Docking Studies on 6-Desoxo- <i>N</i> -methylmorphinans as Potent μ-Opioid Receptor Agonists. Journal of Medicinal Chemistry, 2017, 60, 9407-9412.	2.9	13

#	Article	IF	CITATIONS
55	Synthesis, Biological, and Structural Explorations of New Zwitterionic Derivatives of 14-O-Methyloxymorphone, as Potent μ/Ĵ´Opioid Agonists and Peripherally Selective Antinociceptives. Journal of Medicinal Chemistry, 2019, 62, 641-653.	2.9	13
56	Optimized Opioid-Neurotensin Multitarget Peptides: From Design to Structure–Activity Relationship Studies. Journal of Medicinal Chemistry, 2020, 63, 12929-12941.	2.9	13
57	Affinity profiles of novel delta-receptor selective benzofuran derivatives of non-peptide opioids. Neurochemical Research, 1998, 23, 1211-1216.	1.6	12
58	Contralateral, ipsilateral and bilateral treatments with the κ-opioid receptor agonist U-50,488H in mononeuropathic rats. European Journal of Pharmacology, 2004, 494, 139-146.	1.7	12
59	Current κ Opioid Receptor Ligands and Discovery of a New Molecular Scaffold as a κ Opioid Receptor Antagonist Using Pharmacophore-Based Virtual Screening. Current Pharmaceutical Design, 2014, 19, 7362-7372.	0.9	12
60	Synthesis and Pharmacological Activities of 6-Glycine Substituted 14-Phenylpropoxymorphinans, a Novel Class of Opioids with High Opioid Receptor Affinities and Antinociceptive Potenciesâ€. Journal of Medicinal Chemistry, 2011, 54, 980-988.	2.9	11
61	Exploring Pharmacological Activities and Signaling of Morphinans Substituted in Position 6 as Potent Agonists Interacting with the μ Opioid Receptor. Molecular Pain, 2014, 10, 1744-8069-10-48.	1.0	9
62	In vitro and in vivo Pharmacological Activities of 14-O-Phenylpropyloxymorphone, a Potent Mixed Mu/Delta/Kappa-Opioid Receptor Agonist With Reduced Constipation in Mice. Frontiers in Pharmacology, 2018, 9, 1002.	1.6	9
63	Development of Diphenethylamines as Selective Kappa Opioid Receptor Ligands and Their Pharmacological Activities. Molecules, 2020, 25, 5092.	1.7	9
64	Fundamentals of the Dynorphins/Kappa Opioid Receptor System: From Distribution to Signaling and Function. Handbook of Experimental Pharmacology, 2021, 271, 3-21.	0.9	9
65	Antinociceptive Efficacy of the µ-Opioid/Nociceptin Peptide-Based Hybrid KGNOP1 in Inflammatory Pain without Rewarding Effects in Mice: An Experimental Assessment and Molecular Docking. Molecules, 2021, 26, 3267.	1.7	9
66	HA-MOP knockin mice express the canonical µ-opioid receptor but lack detectable splice variants. Communications Biology, 2021, 4, 1070.	2.0	9
67	Functionalization of the Carbonyl Group in Position 6 of Morphinan-6-ones. Development of Novel 6-Amino and 6-Guanidino Substituted 14-Alkoxymorphinans. Current Pharmaceutical Design, 2014, 19, 7391-7399.	0.9	8
68	Structural determinants of diphenethylamines for interaction with the κ opioid receptor: Synthesis, pharmacology and molecular modeling studies. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4769-4774.	1.0	8
69	Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes–6. Molecules, 2020, 25, 119.	1.7	8
70	Etorphine-Related Ferrocenyl-Substituted Morphinan Alkaloids. Helvetica Chimica Acta, 2003, 86, 3274-3280.	1.0	7
71	Development of 5-Substituted <i>N</i> -Methylmorphinan-6-ones as Potent Opioid Analgesics with Improved Side-Effect Profile. International Journal of Medicinal Chemistry, 2012, 2012, 1-10.	2.2	7
72	Recent Chemical and Pharmacological Developments on 14-Oxygenated-N-methylmorphinan-6-ones. Molecules, 2021, 26, 5677.	1.7	7

#	Article	IF	CITATIONS
73	Mechanistic Characterization of the Pharmacological Profile of HS-731, a Peripherally Acting Opioid Analgesic, at the Âμ-, δ-, β-Opioid and Nociceptin Receptors. Molecules, 2022, 27, 919.	1.7	7
74	Quantitative Electronic Structure-Activity Relations: The Influence of Basis Set Selection on Prediction Quality. QSAR and Combinatorial Science, 2003, 22, 476-481.	1.5	5
75	Non-peptidic δ-opioid receptor antagonists suppress mitogen-induced tryptophan degradation in peripheral blood mononuclear cells in vitro. Immunology Letters, 2008, 118, 82-87.	1.1	5
76	Opioids and Their Receptors: Present and Emerging Concepts in Opioid Drug Discovery. Molecules, 2020, 25, 5658.	1.7	5
77	Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes–7. Molecules, 2020, 25, 2968.	1.7	5
78	Kappa Opioid Receptor Ligands and Pharmacology: Diphenethylamines, a Class of Structurally Distinct, Selective Kappa Opioid Ligands. Handbook of Experimental Pharmacology, 2021, 271, 163-195.	0.9	5
79	In Vitro, In Vivo and In Silico Characterization of a Novel Kappa-Opioid Receptor Antagonist. Pharmaceuticals, 2022, 15, 680.	1.7	4
80	Synthesis and binding characteristics of the highly selective radiolabelled deltorphin analogues containing 2-aminotetralin-2-carboxylic acid in position 3. Neuropeptides, 1997, 31, 483-488.	0.9	2
81	Synthesis and Characterization of Thiazolo―and Thiazinomorphinans and Their Intermediate Products as Novel Opioidâ€Active Derivatives. Archiv Der Pharmazie, 2012, 345, 852-858.	2.1	2
82	Neurokinin A in rat adjuvant arthritis. Effect of capsaicin treatment. NeuroReport, 1999, 10, 3307-3313.	0.6	1
83	Unveiling 7-Hydroxymitragynine as the Key Active Metabolite of Mitragynine and the Promise for Creating Novel Pain Relievers. ACS Central Science, 2019, 5, 936-938.	5.3	1
84	Synthesis and Biological Evaluation of 14-Alkoxymorphinans. Part 19. Effect of 14-O-Benzylation on the Opioid Receptor Affinity and Antagonist Potency of Naltrexone ChemInform, 2003, 34, no.	0.1	0
85	The peripheral antinociceptive effect of DAMGO and 6β-glycine-substituted 14-O-methyloxymorphone (HS-731) after systemic administration in a mouse visceral pain model. BMC Pharmacology, 2007, 7, .	0.4	0
86	Comparison of physicochemical properties and biological activities of opioid morphinans interacting with mu opioid receptors. BMC Pharmacology, 2008, 8, .	0.4	0
87	5-Benzyl substituted 14-methoxymetopon, a high affinity μ opioid receptor agonist with potent antinociceptive activity in mice. BMC Pharmacology, 2008, 8, A29.	0.4	0
88	Synthesis, opioid receptor binding profile and SAR studies of 14-alkoxy-substituted indolo- and benzofuromorphinans. BMC Pharmacology, 2008, 8, A30.	0.4	0
89	483 ANALGESIC EFFECTS OF 14â€METHOXYMETOPON IN A MURINE MODEL OF CANCER PAIN. European Journal of Pain, 2009, 13, S143c.	1.4	0
90	A ligand-based 3D pharmacophore model for the μ opioid receptor: application to the morphinan class of opioids. BMC Pharmacology, 2010, 10, .	0.4	0

#	Article	IF	CITATIONS
91	Development of novel N-methyl and N-allyl-substituted oxazolomorphinans and their interaction with opioid receptors. BMC Pharmacology, 2011, 11, .	0.4	0
92	Identification of novel ligands interacting with kappa opioid receptors. BMC Pharmacology, 2011, 11, .	0.4	0
93	Introduction of a 6-cyano group in 14-oxygenated N-methylmorphinans influences in vitro and in vivo pharmacological activities. BMC Pharmacology, 2011, 11, .	0.4	0
94	Efficacy of systemic HS-198, an analogue of oxymorphone, on cancer pain-related behaviour in mice. BMC Pharmacology, 2011, 11, A4.	0.4	0
95	Biological, pharmacological and immunological activities of novel 6-amino-acid-substituted 14-alkoxy-N-methylmorphinans. BMC Pharmacology, 2011, 11, .	0.4	0
96	Influence of the 14-alkoxy group and the substitution in position 5 in N-methyl-14-alkoxymorphinan-6-ones on in vitro and in vivo pharmacological activities. BMC Pharmacology & Toxicology, 2012, 13, A33.	1.0	0
97	Discovery and biological evaluation of a diphenethylamine derivative (HS665), a highly potent and selective κ opioid receptor agonist. BMC Pharmacology & Toxicology, 2012, 13, .	1.0	0

28 Editorial (Thematic Issue: Current Perspectives and Challenges in Design, Chemistry and Pharmacology) Tj ETQq0 0.0 rgBT /Overlock 10

99	A Bifunctional Biased Mu Opioid Agonist - Neuropeptide Ff Receptor Antagonist as Analgesic with Improved Acute and Chronic Side Effects. , 0, , .		0
100	Injectable peptide hydrogels for controlled drug release. , 0, , .		0
101	Opioids and Their Receptors: Present and Emerging Concepts in Opioid Drug Discovery II. Molecules, 2022, 27, 3140.	1.7	0