Maozhi Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3534764/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pathogenesis-related protein 1 suppresses oomycete pathogen by targeting against AMPK kinase complex. Journal of Advanced Research, 2023, 43, 13-26.	9.5	14

2 Genetic Variation Studies of Ionic and within Boll Yield Components in Cotton (<i>Gossypium) Tj ETQq0 0 0 rgBT /Qverlock 10 Tf 50 702

3	First Report of <i>Fusarium asiaticum</i> Causing Stem Rot of <i>Ligusticum chuanxiong</i> in China. Plant Disease, 2022, 106, 325.	1.4	3
4	Salicylic acid fights against Fusarium wilt by inhibiting target of rapamycin signaling pathway in Fusarium oxysporum. Journal of Advanced Research, 2022, 39, 1-13.	9.5	21
5	Integration of Light and Auxin Signaling in Shade Plants: From Mechanisms to Opportunities in Urban Agriculture. International Journal of Molecular Sciences, 2022, 23, 3422.	4.1	6
6	Genome-wide characterization and expression analysis of Erf gene family in cotton. BMC Plant Biology, 2022, 22, 134.	3.6	23
7	Biochemical and Associated Agronomic Traits in Gossypium hirsutum L. under High Temperature Stress. Agronomy, 2022, 12, 1310.	3.0	13
8	Antifungal activity and mechanism of thymol against Fusarium oxysporum, a pathogen of potato dry rot, and its potential application. Postharvest Biology and Technology, 2022, 192, 112025.	6.0	17
9	Antifungal activity of chitosan against Phytophthora infestans, the pathogen of potato late blight. International Journal of Biological Macromolecules, 2021, 166, 1365-1376.	7.5	42
10	Potential of microbial endophytes to enhance the resistance to postharvest diseases of fruit and vegetables. Journal of the Science of Food and Agriculture, 2021, 101, 1744-1757.	3.5	51
11	Genome-wide miRNA expression profiling in potato (<i>Solanum tuberosum</i> L.) reveals TOR-dependent post-transcriptional gene regulatory networks in diverse metabolic pathway. PeerJ, 2021, 9, e10704.	2.0	6
12	Chitosan is an effective inhibitor against potato dry rot caused by Fusarium oxysporum. Physiological and Molecular Plant Pathology, 2021, 113, 101601.	2.5	24
13	The molecular mechanisms of Phytophthora infestans in response to reactive oxygen species (ROS) stress. Phytopathology, 2021, , PHYTO08200321R.	2.2	3
14	Host autophagy is a shared target of virulence factors of <i>Phytophthora infestans</i> and <i>Plasmodium</i> parasite. Journal of Phytopathology, 2021, 169, 271-282.	1.0	0
15	TOR Inhibitors Synergistically Suppress the Growth and Development of Phytophthora infestans, a Highly Destructive Pathogenic Oomycete. Frontiers in Microbiology, 2021, 12, 596874.	3.5	3
16	Functional Analysis of Autophagy-Related Gene ATG12 in Potato Dry Rot Fungus Fusarium oxysporum. International Journal of Molecular Sciences, 2021, 22, 4932.	4.1	1
17	BIN2 negatively regulates plant defence against <i>Verticillium dahliae in Arabidopsis</i> and cotton. Plant Biotechnology Journal, 2021, 19, 2097-2112.	8.3	30
18	Target of rapamycin controls hyphal growth and pathogenicity through FoTIP4 in <i>Fusarium oxysporum</i> . Molecular Plant Pathology, 2021, 22, 1239-1255.	4.2	8

Maozhi Ren

#	Article	IF	CITATIONS
19	Contributions of TOR Signaling on Photosynthesis. International Journal of Molecular Sciences, 2021, 22, 8959.	4.1	10
20	Exploiting Agronomic and Biochemical Traits to Develop Heat Resilient Cotton Cultivars under Climate Change Scenarios. Agronomy, 2021, 11, 1885.	3.0	22
21	Auxin and Target of Rapamycin Spatiotemporally Regulate Root Organogenesis. International Journal of Molecular Sciences, 2021, 22, 11357.	4.1	4
22	Biotechnological development of plants for space agriculture. Nature Communications, 2021, 12, 5998.	12.8	16
23	Comparative genomic analysis of the tricarboxylic acid cycle members in four Solanaceae vegetable crops and expression pattern analysis in Solanum tuberosum. BMC Genomics, 2021, 22, 821.	2.8	8
24	Unraveling Heat Tolerance in Upland Cotton (Gossypium hirsutum L.) Using Univariate and Multivariate Analysis. Frontiers in Plant Science, 2021, 12, 727835.	3.6	26
25	Target of rapamycin regulates potassium uptake in Arabidopsis and potato. Plant Physiology and Biochemistry, 2020, 155, 357-366.	5.8	13
26	StABI5 Involved in the Regulation of Chloroplast Development and Photosynthesis in Potato. International Journal of Molecular Sciences, 2020, 21, 1068.	4.1	16
27	Target of Rapamycin (TOR) Negatively Regulates Ethylene Signals in Arabidopsis. International Journal of Molecular Sciences, 2020, 21, 2680.	4.1	25
28	Ethylicin Prevents Potato Late Blight by Disrupting Protein Biosynthesis of Phytophthora infestans. Pathogens, 2020, 9, 299.	2.8	10
29	ABSCISIC ACID INSENSITIVE5 Interacts With RIBOSOMAL S6 KINASE2 to Mediate ABA Responses During Seedling Growth in Arabidopsis. Frontiers in Plant Science, 2020, 11, 598654.	3.6	8
30	Hostâ€induced gene silencing of BcTOR in Botrytis cinerea enhances plant resistance to grey mould. Molecular Plant Pathology, 2019, 20, 1722-1739.	4.2	35
31	Autophagy Related Gene (ATG3) is a Key Regulator for Cell Growth, Development, and Virulence of Fusarium oxysporum. Genes, 2019, 10, 658.	2.4	12
32	Hypocotyl Elongation Inhibition of Melatonin Is Involved in Repressing Brassinosteroid Biosynthesis in Arabidopsis. Frontiers in Plant Science, 2019, 10, 1082.	3.6	22
33	Role of Autophagy-Related Gene atg22 in Developmental Process and Virulence of Fusarium oxysporum. Genes, 2019, 10, 365.	2.4	18
34	A role for TOR signaling at every stage of plant life. Journal of Experimental Botany, 2019, 70, 2285-2296.	4.8	21
35	Functional Characterization of Target of Rapamycin Signaling in Verticillium dahliae. Frontiers in Microbiology, 2019, 10, 501.	3.5	24
36	Fighting against fall armyworm by using multiple genes pyramiding and silencing (MGPS) technology. Science China Life Sciences, 2019, 62, 1703-1706.	4.9	7

Maozhi Ren

#	Article	IF	CITATIONS
37	Identification and characterization of the TCA cycle genes in maize. BMC Plant Biology, 2019, 19, 592.	3.6	28
38	Synergistic antiâ€oomycete effect of melatonin with a biofungicide against oomycetic black shank disease. Journal of Pineal Research, 2018, 65, e12492.	7.4	55
39	HRD1-mediated PTEN degradation promotes cell proliferation and hepatocellular carcinoma progression. Cellular Signalling, 2018, 50, 90-99.	3.6	31
40	Target of Rapamycin (TOR) Regulates the Expression of IncRNAs in Response to Abiotic Stresses in Cotton. Frontiers in Genetics, 2018, 9, 690.	2.3	30
41	Ectopic expression of Arabidopsis Target of Rapamycin (AtTOR) improves water-use efficiency and yield potential in rice. Scientific Reports, 2017, 7, 42835.	3.3	66
42	The crosstalk between Target of Rapamycin (TOR) and Jasmonic Acid (JA) signaling existing in Arabidopsis and cotton. Scientific Reports, 2017, 7, 45830.	3.3	67
43	Silencing of <i>Sl<scp>PL</scp></i> , which encodes a pectate lyase in tomato, confers enhanced fruit firmness, prolonged shelfâ€life and reduced susceptibility to grey mould. Plant Biotechnology Journal, 2017, 15, 1544-1555.	8.3	158
44	Overexpression of a tomato miR171 target gene <i>Sl<scp>GRAS</scp>24</i> impacts multiple agronomical traits via regulating gibberellin and auxin homeostasis. Plant Biotechnology Journal, 2017, 15, 472-488.	8.3	125
45	Brassinosteriod Insensitive 2 (BIN2) acts as a downstream effector of the Target of Rapamycin (TOR) signaling pathway to regulate photoautotrophic growth in Arabidopsis. New Phytologist, 2017, 213, 233-249.	7.3	93
46	The TOR Pathway Is Involved in Adventitious Root Formation in Arabidopsis and Potato. Frontiers in Plant Science, 2017, 8, 784.	3.6	49
47	Melatonin Attenuates Potato Late Blight by Disrupting Cell Growth, Stress Tolerance, Fungicide Susceptibility and Homeostasis of Gene Expression in Phytophthora infestans. Frontiers in Plant Science, 2017, 8, 1993.	3.6	114
48	Target of Rapamycin Is a Key Player for Auxin Signaling Transduction in Arabidopsis. Frontiers in Plant Science, 2016, 7, 291.	3.6	81
49	Tomato FK506 Binding Protein 12KD (FKBP12) Mediates the Interaction between Rapamycin and Target of Rapamycin (TOR). Frontiers in Plant Science, 2016, 7, 1746.	3.6	40
50	Expression profiling and functional analysis reveals that TOR is a key player in regulating photosynthesis and phytohormone signaling pathways in Arabidopsis. Frontiers in Plant Science, 2015, 6, 677.	3.6	178
51	TOR-inhibitor insensitive-1 (TRIN1) regulates cotyledons greening in Arabidopsis. Frontiers in Plant Science, 2015, 6, 861.	3.6	67
52	miR168 influences phase transition, leaf epinasty, and fruit development via SIAGO1s in tomato. Journal of Experimental Botany, 2014, 65, 6655-6666.	4.8	55
53	Target of Rapamycin Signaling Regulates Metabolism, Growth, and Life Span in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 24, 4850-4874	6.6	235
54	ScFKBP12 bridges rapamycin and AtTOR in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2013, 8, e26115.	2.4	7

#	Article	IF	CITATIONS
55	Target of Rapamycin Regulates Development and Ribosomal RNA Expression through Kinase Domain in Arabidopsis Â. Plant Physiology, 2011, 155, 1367-1382.	4.8	168