Mengna Bai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3534699/publications.pdf

Version: 2024-02-01

1478505 1872680 6 138 6 6 citations h-index g-index papers 6 6 6 131 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Bouncing off walls – widths of exit channels from shallow minima can dominate selectivity control. Chemical Science, 2020, 11, 9937-9944.	7.4	17
2	Anomalous kinetics of the reaction between OH and HO ₂ on an accurate triplet state potential energy surface. Physical Chemistry Chemical Physics, 2019, 21, 12667-12675.	2.8	30
3	Multidimension Insight Involving Experimental and in Silico Investigation into the Corrosion Inhibition of $\langle i \rangle N \langle i \rangle, \langle i \rangle N \langle i \rangle$. Dibenzyl Dithiocarbamate Acid on Copper in Sulfuric Acid Solution. Industrial & Diperimental & Diperimen	3.7	28
4	Tracking the energy flow in the hydrogen exchange reaction OH + H ₂ O â†' H ₂ O + OH. Physical Chemistry Chemical Physics, 2018, 20, 12543-12556.	2.8	19
5	Quasi-classical trajectory studies on the full-dimensional accurate potential energy surface for the OH + H2O = H2O + OH reaction. Physical Chemistry Chemical Physics, 2017, 19, 17718-17725.	2.8	30
6	Ring-polymer molecular dynamical calculations for the F + HCl â†' HF + Cl reaction on the ground 1 ² A′ potential energy surface. Physical Chemistry Chemical Physics, 2016, 18, 32031-32041.	2.8	14