Mikaela Grönholm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3534464/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How integrin phosphorylations regulate cell adhesion and signaling. Trends in Biochemical Sciences, 2022, 47, 265-278.	7.5	25
2	A novel immunopeptidomic-based pipeline for the generation of personalized oncolytic cancer vaccines. ELife, 2022, 11, .	6.0	21
3	Peptides-Coated Oncolytic Vaccines for Cancer Personalized Medicine. Frontiers in Immunology, 2022, 13, 826164.	4.8	8
4	Regulation of Dynamic Cell Adhesion by Integrin-Integrin Crosstalk. Cells, 2022, 11, 1685.	4.1	2
5	GAMER-Ad: a novel and rapid method for generating recombinant adenoviruses. Molecular Therapy - Methods and Clinical Development, 2021, 20, 625-634.	4.1	8
6	Patient-Derived Organoids for Precision Cancer Immunotherapy. Cancer Research, 2021, 81, 3149-3155.	0.9	46
7	Viral Molecular Mimicry Influences the Antitumor Immune Response in Murine and Human Melanoma. Cancer Immunology Research, 2021, 9, 981-993.	3.4	22
8	PeptiCHIP: A Microfluidic Platform for Tumor Antigen Landscape Identification. ACS Nano, 2021, 15, 15992-16010.	14.6	17
9	Bioadhesive supramolecular hydrogel from unprotected, short <scp>d</scp> , <scp>l</scp> -peptides with Phe-Phe and Leu-Asp-Val motifs. Chemical Communications, 2020, 56, 3015-3018.	4.1	33
10	Regulation of cell adhesion: a collaborative effort of integrins, their ligands, cytoplasmic actors, and phosphorylation. Quarterly Reviews of Biophysics, 2019, 52, e10.	5.7	22
11	A nebulin superâ€repeat panel reveals stronger actin binding toward the ends of the superâ€repeat region. Muscle and Nerve, 2019, 59, 116-121.	2.2	10
12	Phosphorylation of the α-chain in the integrin LFA-1 enables β2-chain phosphorylation and α-actinin binding required for cell adhesion. Journal of Biological Chemistry, 2018, 293, 12318-12330.	3.4	12
13	LFA-1 integrin antibodies inhibit leukocyte α4β1–mediated adhesion by intracellular signaling. Blood, 2016, 128, 1270-1281.	1.4	37
14	HMCB4 is expressed by neuronal cells and affects the expression of genes involved in neural differentiation. Scientific Reports, 2016, 6, 32960.	3.3	14
15	Specific Phosphorylations Transmit Signals from Leukocyte β2 to β1 Integrins and Regulate Adhesion. Journal of Biological Chemistry, 2014, 289, 32230-32242.	3.4	21
16	Mutation Update and Genotype-Phenotype Correlations of Novel and Previously Described Mutations in <i>TPM2</i> and <i>TPM3</i> Causing Congenital Myopathies. Human Mutation, 2014, 35, 779-790.	2.5	92
17	Nebulin interactions with actin and tropomyosin are altered by disease-causing mutations. Skeletal Muscle, 2014, 4, 15.	4.2	39
18	Isolation and characterization of plateletâ€derived extracellular vesicles. Journal of Extracellular Vesicles, 2014, 3, .	12.2	237

Mikaela Grönholm

#	Article	IF	CITATIONS
19	Regulation of Integrin Activity by Phosphorylation. Advances in Experimental Medicine and Biology, 2014, 819, 85-96.	1.6	13
20	K7del is a common TPM2 gene mutation associated with nemaline myopathy and raised myofibre calcium sensitivity. Brain, 2013, 136, 494-507.	7.6	42
21	Platelet-Derived Microvesicles: Multitalented Participants in Intercellular Communication. Seminars in Thrombosis and Hemostasis, 2012, 38, 102-113.	2.7	158
22	Abnormal actin binding of aberrant β-tropomyosins is a molecular cause of muscle weakness in <i>TPM2</i> -related nemaline and cap myopathy. Biochemical Journal, 2012, 442, 231-239.	3.7	48
23	Distinct overlapping sequences at the carboxyâ€ŧerminus of merlin regulate its tumour suppressor and morphogenic activity. Journal of Cellular and Molecular Medicine, 2012, 16, 2161-2175.	3.6	10
24	Multistep Phosphorylation by Oncogenic Kinases Enhances the Degradation of the NF2 Tumor Suppressor Merlin. Neoplasia, 2011, 13, 643-652.	5.3	25
25	Correction: Inhibition of T Cell Activation by Cyclic Adenosine 5′-Monophosphate Requires Lipid Raft Targeting of Protein Kinase A Type I by the A-Kinase Anchoring Protein Ezrin. Journal of Immunology, 2011, 186, 7269-7271.	0.8	1
26	TCR-Induced Activation of LFA-1 Involves Signaling through Tiam1. Journal of Immunology, 2011, 187, 3613-3619.	0.8	29
27	Regulation of integrin activity and signalling. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 431-444.	2.4	176
28	Inhibition of T Cell Activation by Cyclic Adenosine 5′-Monophosphate Requires Lipid Raft Targeting of Protein Kinase A Type I by the A-Kinase Anchoring Protein Ezrin. Journal of Immunology, 2007, 179, 5159-5168.	0.8	108
29	The tumor suppressor merlin interacts with microtubules and modulates Schwann cell microtubule cytoskeleton. Human Molecular Genetics, 2007, 16, 1742-1751.	2.9	39
30	Cell cycle-dependent nucleocytoplasmic shuttling of the neurofibromatosis 2 tumour suppressor merlin. Oncogene, 2005, 24, 1150-1158.	5.9	59
31	Actin-organising properties of the muscular dystrophy protein myotilin. Experimental Cell Research, 2005, 310, 131-139.	2.6	44
32	Characterization of the NF2 protein merlin and the ERM protein ezrin in human, rat, and mouse central nervous system. Molecular and Cellular Neurosciences, 2005, 28, 683-693.	2.2	41
33	Cyclic AMP-dependent Protein Kinase Phosphorylates Merlin at Serine 518 Independently of p21-activated Kinase and Promotes Merlin-Ezrin Heterodimerization. Journal of Biological Chemistry, 2004, 279, 18559-18566.	3.4	117
34	Merlin Links to the cAMP Neuronal Signaling Pathway by Anchoring the Rlβ Subunit of Protein Kinase A. Journal of Biological Chemistry, 2003, 278, 41167-41172.	3.4	44
35	Characterization of Human Palladin, a Microfilament-associated Protein. Molecular Biology of the Cell, 2001, 12, 3060-3073.	2.1	127
36	Association of Ezrin with Intercellular Adhesion Molecule-1 and -2 (ICAM-1 and ICAM-2). Journal of Biological Chemistry, 1998, 273, 21893-21900.	3.4	285